From nuclei to stars

Nuclear reaction cross-sections and thermonuclear reaction rates

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr)
Laboratoire de Physique des 2 Infinis Irène Joliot Curie
Université Paris Saclay
Outline

Lecture 1: Introduction to nuclear astrophysics
Lecture 2: Nucleosynthesis processes in the Universe
Lecture 3: Cross-sections and thermonuclear reaction rates
 1. Nuclear reaction cross sections
 1. Definitions
 2. Quantum tunneling
 3. Astrophysical S-factor
 4. Reaction mechanisms, Breit-Wigner cross-section...
 2. Thermonuclear reaction rates
 1. Definitions
 2. Gamow window
 3. Non-resonant & resonant reaction rates for charged particles
 3. Additional effects on thermonuclear reaction rates
Lecture 4: Experimental approaches in nuclear astrophysics
1. Reaction cross-section
Definition of cross-section

- Cross-section of the reaction $1 + 2 \rightarrow 3 + 4$ [notation $1(2,3)4$] is defined as:

\[
\text{number of reactions / second} \over (\text{nb of projectiles / cm}^2 / \text{second}) \times (\text{nb of target nuclei})
\]

= surface presented by 1 to the projectile 2 for a given reaction

- “Billiard-type” description of the cross-section

\[
\sigma = \pi (R_1 + R_2)^2 \text{ with the nuclear radius } R_N \approx 1.3 A^{1/3} \text{ fm (10^{-13} cm)}
\]

$\rightarrow \sigma(^1\text{H} + ^1\text{H}) = 0.2 \times 10^{-24} \text{ cm}^2$ \hspace{1cm} $\sigma(^{238}\text{U} + ^{238}\text{U}) = 8.2 \times 10^{-24} \text{ cm}^2$

\rightarrow unit of nuclear cross-sections: 1 barn (b) = 10^{-24} cm2
• **Quantum description** of the maximum reaction cross-section

\[\sigma_{\text{max}} = (2l + 1)\pi \lambda^2 \]

where \(\lambda = \frac{\hbar}{\sqrt{2\mu E}} = \frac{m_1 + m_2}{m_1} \frac{\hbar}{\sqrt{2m_2 E_2}} \)

is the de Broglie wavelength, \(E \) the total kinetic energy in the center-of-mass system of reference, and \(\mu = m_1 m_2 / (m_1 + m_2) \) the reduced mass. Note that \(\sigma_{\text{max}} \propto 1/E \)

The statistical factor \((2l+1)\) corresponds to the number of eigenstates of the system 1+2 of angular momentum \(L \) (\(l \) is the orbital quantum number)

• \(\sigma < \sigma_{\text{max}} \) in part. because of the centrifugal and Coulomb barriers
The Coulomb and centrifugal barriers

• **Coulomb barrier**: in a reaction between charged particles (atomic numbers \(Z_1, Z_2\))

\[
V_{\text{coul}}(r) = \frac{Z_1 Z_2 e^2}{r} = 1.44 \frac{Z_1 Z_2}{r (\text{fm})} \quad \text{(MeV)}
\]

• **Centrifugal barrier**: energy needed to move closer 1 and 2 to a distance \(r\) given the orbital momentum \(L\)

\[
V_{\text{cent}}(r) = \frac{\|\vec{L}\|^2}{2 \mu r^2} \quad \Rightarrow \quad V_{\text{cent}}(r) = \frac{l(l + 1)\hbar^2}{2\mu r^2}
\]

\(l(l + 1)\hbar^2\) eigenvalues of \(L^2\)

Remarks:

1) in stars, \(T_c \sim 10^7 - 10^9\) K

\(\to kT_c \sim 1 - 100\) keV < \(V_{\text{coul}}(R_N)\)

\(\text{e.g. } V_{\text{coul}}(p+p) = 550\) keV

\(\Rightarrow\) Penetration of the Coulomb barrier by the "tunnel effect"

2) if \(A_1 + A_2 \sim A_1\), then:

\[
\frac{V_{\text{cent}}(R_N)}{V_{\text{coul}}(R_N)} \approx \frac{10 \times l(l + 1)}{A_2 \left(A_1^{1/3} + A_2^{1/3} \right) Z_1 Z_2}
\]

\(\Rightarrow\) cross sections between light nuclei are "negligible" for non-head-on collisions \((l \neq 0)\)
Experimental cross sections

- Why does the cross-section fall drastically at low energies?
- What is the origin of the peak in the cross section?
The tunnel effect – 1D (1)

Square-barrier potential with $\ell = 0$ → The radial wave functions $u(r)$ (1D) are solution of the time-independent Schrödinger equation

$$\frac{d^2 u}{dr^2} + \frac{2m}{\hbar^2} [E - V(r)] u = 0$$

Solutions

$$u_{III} = Fe^{ikr} + Ge^{-ikr} \quad \text{with} \quad k^2 = \frac{2m}{\hbar^2} E$$

$$u_{II} = Ce^{-kr} + De^{kr} \quad \text{with} \quad \kappa^2 = \frac{2m}{\hbar^2} (V_1 - E)$$

$$u_{I} = Ae^{iKr} + Be^{-iKr} \quad \text{with} \quad K^2 = \frac{2m}{\hbar^2} (E + V_0)$$

Continuity conditions

$$(u_I)_{R_0} = (u_{III})_{R_0}$$

$$\left(\frac{du_I}{dr}\right)_{R_0} = \left(\frac{du_{III}}{dr}\right)_{R_0}$$

$$(u_{III})_{R_1} = (u_{II})_{R_1}$$

$$\left(\frac{du_{II}}{dr}\right)_{R_1} = \left(\frac{du_{III}}{dr}\right)_{R_1}$$

Transmission coefficient

- Ratio of transmitted to incident current densities (of fluxes), e.g. $j_{inc} = u_{III} |G|^2 = \hbar k/m |G|^2$

$$\hat{T} = \frac{K}{k} \frac{|B|^2}{|G|^2} \approx e^{-(2/\hbar) \sqrt{2m(V_1-E)(R_1-R_0)}}$$

Limit of low E
The tunnel effect is the reason for the strong drop in cross-section at low energies!
The tunnel effect – 3D

Radial wave functions for a 3D “square”-barrier potential:

- Same continuity conditions
- Emergence of resonance phenomenon

\[u_{III} = F' \sin (kr + \delta_0) \]
\[u_{II} = C e^{-\kappa r} + D e^{\kappa r} \]
\[u_I = A' \sin (K r) \]

\[\frac{|A'|^2}{|F'|^2} \]

\[\frac{1}{|F'|^2 \frac{1}{T}} \]

A resonance results from favorable wave function matching conditions at the boundaries.

Different \(V_0 \) values mean different wavelength in the interior region.
Transmission through the Coulomb barrier

\[\hat{T} = \hat{T}_1 \cdot \hat{T}_2 \ldots \cdot \hat{T}_n \approx \exp \left[-\frac{2}{\hbar} \sum_i \sqrt{2m(V_i - E)(R_{i+1} - R_i)} \right] \]

\[\rightarrow \exp \left[-\frac{2}{\hbar} \int_{R_0}^{R_c} \sqrt{2m[V(r) - E]} \, dr \right] \]

\[\hat{T} \approx \exp \left(-\frac{2\pi}{\hbar} \sqrt{\frac{\mu}{2E}} Z_1 Z_2 e^2 \right) = \exp (-2\pi\eta) \]

(Zero angular momentum)

- \(\eta \): Sommerfeld parameter
- \(\exp(-2\pi\eta) \): Gamow factor

Example: \(p + p \) (\(\mu_{amu} = 1/2 \))

- \(E_{keV} = 100 \) \(\rightarrow \) \(T = 11\% \)
- \(E_{keV} = 6 \) \(\rightarrow \) \(T = 0.01\% \) (in Sun)
The astrophysical S-factor

\[\sigma(E) = \frac{1}{E} \times e^{-2\pi \eta} \times S(E) \]

S(E): astrophysical S-factor which contains all the nuclear effects for a given reaction

- (sometimes) \(S(E) \) is a smoothly varying function
- Most of the cases, extrapolation to astrophysical energies needed!
Let's consider the reaction $A(a, b)B$ where b can be a particle or a photon.

Direct capture
- **One step process** leading to final nucleus B
- **Single matrix element**
 \[\sigma \propto |\langle b + B | H | a + A \rangle|^2 \]
- **Occurs at all interaction energies**
- **Weak energy dependence of S-factor**

![Direct capture graph](image1)

Example: $^{16}\text{O}(p, \gamma)^{17}\text{F}$

Resonant capture
- **Two steps process**
 1) Formation of compound nucleus $a + A \rightarrow C^*$
 2) Decay of compound nucleus $C^* \rightarrow b + B$
- **Product of two matrix elements**
 \[\sigma \propto |\langle b + B | H_1 | C^* \rangle|^2 \times |\langle C^* | H_2 | a + A \rangle|^2 \]
- **Occurs at specific energies**
- **Strong energy dependence of S-factor**

![Resonant capture graph](image2)

Example: $^{13}\text{C}(p, \gamma)^{14}\text{N}$

Cross section
Resonant capture

A simple case: $^{12}\text{C}(p,\gamma)^{13}\text{N}$

- Reaction Q-value ($\Delta = \text{mass excess}$)
 \[Q = \Delta(^{12}\text{C}) + \Delta(p) - \Delta(^{13}\text{N}) = 1.943 \text{ MeV} \]
- Particle (proton) separation energy S_p
 \[S_p = \Delta(^{12}\text{C}) + \Delta(p) - \Delta(^{13}\text{N}) \]
- Resonance energy (in center of mass)
 \[E_R = E_x - S_p = 2.365 - 1.943 = 422 \text{ keV} \]
- Relative angular momentum ℓ
 \[J_R = J(^{12}\text{C}) + J(p) + \ell = 1/2 \]
 \[\pi_R = \pi(^{12}\text{C}).\pi(p).(-1)^\ell = +1 \]
 \[\rightarrow \ell = 0 \]
- Coupling scheme (start with entrance channel)

Cross section
The first two resonant states in the $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reaction have known energy and spin/parity.

1) Calculate the Q-value of the reaction, and determine the resonance energies. Compare with experimental data.

2) Calculate the relative orbital angular momentum ℓ needed to form these states.

Useful information: $J^\pi(^{13}\text{C}) = 1/2^-$, $\Delta(^{13}\text{C}) = 3.125$ MeV, $\Delta(^{1}\text{H}) = 7.289$ MeV, $\Delta(^{14}\text{N}) = 2.863$ MeV.
Resonant capture: your turn!

The first two resonant states in the $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reaction have known energy and spin/parity.

1) Calculate the Q-value of the reaction, and determine the resonance energies. Compare with experimental data.

2) Calculate the relative orbital angular momentum ℓ needed to form these states.

Useful information: $J^\pi(^{13}\text{C}) = 1/2^-$, $\Delta(^{13}\text{C}) = 3.125$ MeV, $\Delta(^{1}\text{H}) = 7.289$ MeV, $\Delta(^{14}\text{N}) = 2.863$ MeV.

1) $S_p = Q = \Delta(^{13}\text{C}) + \Delta(^{1}\text{H}) - \Delta(^{14}\text{N}) = 7.551$ MeV

 $E_{R}(2^-) = 7.966 - 7.551 = 415$ keV

 $E_{R}(1^-) = 8.062 - 7.551 = 511$ keV

2) Entrance channel:
 - Channel spin: $|J(^{13}\text{C}) - J(p)| \leq s \leq |J(^{13}\text{C}) + J(p)|$
 $\rightarrow s = 0, 1$
 - Parity: $\pi = \pi(^{13}\text{C}).\pi(p) = -1 \times +1 = -1$

 Resonances:
 - Negative parity states: $\pi_R = \pi(-1)^\ell \rightarrow \ell$ even
 - $J_R = s + \ell \rightarrow |s-\ell| \leq J_R \leq |s+\ell|$
 $\rightarrow \ell = 0 \Rightarrow J_R = 0, 1; \ell = 2 \Rightarrow J_R = 1, 2, 3$
Direct capture: your turn!

Explain why the $^{16}\text{O}(p,\gamma)^{17}\text{F}$ reaction proceeds through direct capture and not resonant capture.

Nuclear resonance profile

Energy profile of excited nuclear states

- Time-dependent wave function:
 \[\Psi(t) = \Psi(0) e^{-\frac{i}{\hbar} E_R t} \times e^{-\frac{t}{2\tau}} \]
 where \(\tau \) is the mean lifetime of the excited state

- The wave function as a function of energy is obtained by the Fourier transform (conjugate variables):
 \[\phi(E) = \int_0^\infty \Psi(t) e^{\frac{i}{\hbar} E t} dt \]

- The probability distribution is then:
 \[f_R(E) = |\phi(E)|^2 = \frac{\hbar}{2\pi\tau} \frac{1}{(E - E_R)^2 + \left(\frac{\hbar}{2\tau}\right)^2} \]
 = Breit-Wigner profile (Cauchy-Lorentz distribution)

Full width at half maximum
\[\Gamma = \frac{\hbar}{\tau} \]
\(\iff \) Heinsenberg uncertainty principle
Particle partial width

- Partial width (energy unit): $\Gamma_a = \hbar \lambda_a$ where λ_a is the probability per unit time that the “decay” particle a (p, n, α, ...) passes through a large spherical surface at a distance r, $r \to \infty$:

$$\lambda_a = \lim_{r \to \infty} v \int \int d\Omega |\Psi(r, \theta, \phi)|^2 r^2 \sin \theta d\theta d\phi$$

$$\lambda_a = \lim_{r \to \infty} v \int \int d\Omega \left| \frac{u(r)}{r} \right|^2 |Y_{lm}(\theta, \phi)|^2 r^2 \sin \theta d\theta d\phi = v |u_l(\infty)|^2$$

v being the relative velocity, and $Y_{lm}(\theta, \phi)$ the spherical harmonics

- With the penetration factor for the Coulomb and centrifugal barriers

$$P_l(E, R_N) = \frac{|u_l(\infty)|^2}{|u_l(R_N)|^2} \Rightarrow \Gamma_a = \hbar \sqrt{\frac{2E}{\mu}} P_l(E, R_N) |u_l(R_N)|^2$$

- The partial width is the product of two factors:
 - Probability of appearance of particle a at the nuclear radius R_N
 - Probability that particle a pass through Coulomb and centrifugal barrier
Gamma-ray transitions

- **Multipole expansion** of the electromagnetic operator: Q_{L}^{EM}

 Transition rate $\Rightarrow \lambda_L \propto \langle \Psi_f | Q_{L}^{EM} | \Psi_i \rangle^2$

- **Selection rules** (conservations of angular momentum and parity):

 $|J_i - J_f| \leq L \leq |J_i + J_f|$

 $\pi_i = \pi_f (-1)^L$ if electric

 $\pi_i = \pi_f (-1)^{L+1}$ if magnetic

- **Weisskopf estimate** = jump of a proton from one shell-model state to another, assuming the nucleus consists of an inert core plus a proton

 $\Rightarrow \Gamma_{\gamma}^L = \hbar \lambda_L = \alpha_L^{EM} E_{\gamma}^{2L+1}$
Resonant capture

Let’s consider the $a + A$ reaction proceeding through the formation of compound nucleus C^*

$$a + A \rightarrow C^* \rightarrow b + B \quad \gamma + C$$

Q-value, particle emission threshold $S_a(C)$, $S_b(C)$, and resonance energy

- Q-value for $A(a,b)B \rightarrow Q = \Sigma \Delta_i - \Sigma \Delta_f$
- $S_a = \Delta(a) + \Delta(A) - \Delta(C)$
- $E_R = E_x - S_a$ (Note: the resonance energy depends on the channel!)

Partial and total widths

- Γ_a: formation probability of the compound nucleus C^* from the $a+A$ entrance channel
- Γ_b: decay probability of the compound nucleus C^* to the $b+B$ exit channel
- Γ_γ: γ-ray decay probability of the compound nucleus C^* to its ground-state
- $\Gamma = \Gamma_a + \Gamma_b + \Gamma_\gamma + ...$
The Breit-Wigner cross section

Cross section for the resonant reaction \(a + A \rightarrow C^* \rightarrow b + B \) where \(C^* \) is an excited state of the compound nucleus \(C \):

\[
\sigma_{BW}(E) \sim \sigma_{max} \times f_R(E) \times \Gamma_a \Gamma_b
\]

\[
\sigma_{BW}(E) = \pi \lambda^2 \frac{2J_R + 1}{(2J_a + 1)(2J_A + 1)} \left(1 + \delta_{aA}\right) \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}
\]

- \(J_R \): spin of the resonance in the compound nucleus
- \(J_a, J_A \): total angular momentum of nuclei \(a \) and \(A \)
- Spin statistical factor: \(\omega = \frac{2J_R + 1}{(2J_a + 1)(2J_A + 1)} \left(1 + \delta_{aA}\right) \)
- \(\Gamma_a, \Gamma_b \): partial widths for the entrance & exit channels → they are energy dependent
 - \(\Gamma_i \mu \ P_L(E) \) → charged particles
 - \(\Gamma_i \mu \ E^{L+1/2} \) → neutrons
 - \(\Gamma_i \mu \ E^{2L+1} \) → \(\gamma \)-rays
- \(\Gamma = \sum \Gamma_i \) is the total width

The Breit-Wigner formula is used for:
- Fitting data to deduce resonance properties
- Extrapolating cross section when no measurement exist
- “narrow-resonance” thermonuclear reaction rate
Subthreshold resonances

Any excited state has a finite width:

\[\Gamma = \frac{\hbar}{\tau} \]

- High-energy wing of a “bound” state can extend above the particle threshold
- \(S \)-factor (cross-section) can be entirely dominated by contribution of subthreshold state(s)

Example of the \(^{20}\text{Ne}(p,\gamma)^{21}\text{Na} \) reaction

- \(E_R = 2425 - 2431 = -6 \text{ keV} \)
- Resonance at -6 keV dominates the reaction rate
Neutron capture reactions

- Radiative $A(n,\gamma)B$ neutron capture reaction
 \[\sigma_{(n,\gamma)}(E) \propto \pi \lambda^2 \Gamma_n(E) \Gamma_\gamma(E + Q) \]

- In stars $E \ll Q = S_n$ (neutron separation energy) $\rightarrow \Gamma_{\gamma(E+Q)} \propto \Gamma_{\gamma(Q)}$

- For neutrons, $V_{\text{coul}} = 0$ ($Z_n = 0$), so only the centrifugal barrier is to be considered, the penetrability reads:
 \[P_l(E) \sim E^{l+1/2} \]

- For low-energy s-wave neutrons ($l = 0$)
 \[\sigma(E) \propto \frac{1}{E} E^{1/2} = \frac{1}{v} \]

\[^{24}\text{Mg} + n \]

- (n,n)
 - $E_R = 80$ keV, $\Gamma = 7.2$ keV

- (n,γ)
 - $E_R = 44$ keV, $\Gamma = 1.9$ eV

\[^{24}\text{Mg} + n \]

\[^{25}\text{Mg} \]

\[S_n = 7.331 \]

\[E_x \text{ (MeV)} \]

- 7.411
- 7.375

\[^{24}\text{Mg} + n \]

Cross section

Neutron Energy (eV)

Cross Section (barns)
2. Thermonuclear reaction rates

ITER : International Thermonuclear Experimental Reactor (Cadarache, France)
• **The reaction rate** is the number of reactions $1 + 2 \rightarrow 3 + 4 [1(2,3)4]$ per unit volume and time:

$$r_{123} = \frac{dN_{12}}{dt} = \frac{N_1 N_2}{1 + \delta_{12}} \int_0^{\infty} \sigma_{123}(v) \varphi(v) dv \equiv \frac{N_1 N_2}{1 + \delta_{12}} \langle \sigma v \rangle_{123}$$

where N_i is the density of particle i (cm$^{-3}$), $\varphi(v)dv$ the probability for the relative speed between 1 and 2 to be in the range $[v,v+dv]$, and $<\sigma v>_{123}$ is the reaction rate per particle pair (cm3 s$^{-1}$).

$1+\delta_{12} = 2$ if $1 \equiv 2$, otherwise each pair would be counted twice.

⇒ in practice $N_A <\sigma v>$ in cm3 mol$^{-1}$ s$^{-1}$ is tabulated in literature.

• **The lifetime** τ of 1 against destruction by reaction with 2 is given by:

$$\tau_2(1) = \frac{1}{\lambda_2(1)} = \left(\rho \frac{X_2}{M_2} N_A \langle \sigma v \rangle_{123} \right)^{-1}$$

ρ: mass density (g/cm3)
X: mass fraction
M: molar mass (g/mol)
N_a: Avogadro number (at/mol)
Thermonuclear reaction rates

In a stellar plasma, the kinetic energy of nuclei is given by the thermal agitation velocity

\[\Rightarrow \text{thermonuclear reaction rate} \]

For a non-degenerate perfect gas, the velocity is given by the Maxwell-Boltzmann distribution:

\[\phi(v)dv = \left(\frac{\mu}{2\pi kT} \right)^{3/2} \exp \left(-\frac{\mu v^2}{2kT} \right) 4\pi v^2 dv \]

One obtains for the reaction rate per particle pair (in cm\(^3\) s\(^{-1}\)) as a function of energy:

\[\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E) E e^{-E/kT} dE \]
The nucleosynthesis equations

- Evolution of the densities for each species:
 - system of coupled differential equations (solved numerically)
 - nuclear reaction network

\[
\frac{d(N_{25\text{Al}})}{dt} = N_H N_{24\text{Mg}} \langle \sigma v \rangle_{24\text{Mg}(p,\gamma)} + N_{4\text{He}} N_{22\text{Mg}} \langle \sigma v \rangle_{22\text{Mg}(\alpha,p)} + N_{25\text{Si}} \lambda_{25\text{Si}(\beta^+\nu)} + N_{26\text{Si}} \lambda_{26\text{Si}(\gamma,p)} + \ldots \\
- N_H N_{25\text{Al}} \langle \sigma v \rangle_{25\text{Al}(p,\gamma)} - N_{4\text{He}} N_{25\text{Al}} \langle \sigma v \rangle_{25\text{Al}(\alpha,p)} - N_{25\text{Al}} \lambda_{25\text{Al}(\beta^+\nu)} - N_{25\text{Al}} \lambda_{25\text{Al}(\gamma,p)} - \ldots
\]

- Nuclear energy production rate:
 \[\epsilon = \sum_{ijk} \frac{N_i N_j}{1 + \delta_{ij}} \langle \sigma v \rangle_{ijk} Q_{ijk}\]

where \(Q_{ijk}\) is the Q-value for the \(i + j \rightarrow k\) reaction.
In a stellar plasma, the ^{25}Al nucleus may be destroyed by the capture reaction $^{25}\text{Al}(p,\gamma)^{26}\text{Si}$ or by the β^+-decay ($T_{1/2} = 7.18\text{ s}$). Determine the dominant destruction process among these two at a stellar temperature of $T = 0.3\text{ GK}$, assuming a reaction rate $N_A<\sigma v> = 1.8\times10^{-3}\text{ cm}^3\text{mol}^{-1}\text{s}^{-1}$. Assume a stellar density $\rho = 10^4\text{ g/cm}^3$ and a hydrogen mass fraction $X_H = 0.7$.

Useful information: $M(^1\text{H}) = 1.0078\text{ g/mol}$
In a stellar plasma, the 25Al nucleus may be destroyed by the capture reaction 25Al(p,γ)26Si or by the β^+-decay ($T_{1/2} = 7.18$ s). Determine the dominant destruction process among these two at a stellar temperature of $T = 0.3$ GK, assuming a reaction rate $N_A\langle\sigma v\rangle = 1.8 \times 10^{-3}$ cm3mol$^{-1}$s$^{-1}$. Assume a stellar density $\rho = 10^4$ g/cm3 and a hydrogen mass fraction $X_H = 0.7$.

Useful information: $M(^1\text{H}) = 1.0078$ g/mol

Mean lifetime of both processes:

- β^+-decay: $\tau_{\beta^+}(^{25}\text{Al}) = T_{1/2} / \ln 2 = 10.36$ s

- p capture: $\tau_p(^{25}\text{Al}) = \left(\rho \frac{X_2}{M_2} N_A \langle\sigma v\rangle_{123}\right)^{-1} = \left(10^4 \times \frac{0.7}{1.0078} \times 1.8 \times 10^{-3}\right)^{-1} = 0.08$ s

\Rightarrow under these conditions, the proton capture is the dominant destruction mechanism of 25Al
Most of the time, the S-factor is a complex function of the energy and every nuclear reaction is a specific case.

Possible contributions to the S-factor:
- Narrow resonances (NR)
- Broad resonances (BR)
- Tail of broad resonances (TBR)
- Subthreshold resonances (SR)
- Non-resonant processes
- Interferences

Thermonuclear reaction rates are calculated numerically, however several specific cases are interesting since they result in analytical expressions:
- Smoothly varying S-factor
- Narrow resonance
Gamow peak & non-resonant case

Reaction rate:

\[\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E) E e^{-E/kT} dE \]

If the S-factor is smoothly varying ("non-resonant"):

\[S(E) = \sigma(E) E e^{2\pi \eta} \approx S_0 \]

\[\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} S_0 \int_0^\infty e^{-2\pi \eta} e^{-E/kT} dE \]

Gamow peak is the energy range where most reactions between 1 and 2 occur

Approximation by a Gaussian curve:

\[\exp(-2\pi \eta - E/kT) = I_{\text{max}} \exp \left[- \left(\frac{E - E_0}{\Delta/2} \right)^2 \right] \]

\[E_0 = \pi kT \eta(E_0) = 1.22 \left(Z_1^2 Z_2^2 \mu_{am} T_6^2 \right)^{1/3} \text{ keV} \]

\[\Delta = 4\sqrt{E_0 kT/3} = 0.749 \left(Z_1^2 Z_2^2 \mu_{am} T_6^5 \right)^{1/6} \text{ keV} \]

[\Delta: \text{total width at } 1/e; T_6 \equiv T \text{ (MK)}]
Gamow peak properties

Gamow windows

Maximum of the Gamow peak \((E = E_0)\)

\[
I_{max} = \exp (-\tau)
\]

\[
\tau = \frac{3E_0}{kT} = 42.46 \left(\frac{Z_1^2 Z_2^2 \mu_{amu}}{T_6}\right)^{1/3}
\]

\(\Rightarrow I_{max}\) is strongly dependent of the product \(Z_1 Z_2\)

Important properties

- Gamow peak shift to higher energy for increasing charges \(Z_1, Z_2\)
- Area under Gamow peak decreases drastically with increasing charges \(Z_1\) and \(Z_2\)

<table>
<thead>
<tr>
<th>reaction</th>
<th>Coulomb barrier (keV)</th>
<th>(E_0) (keV)</th>
<th>(\Delta) (keV)</th>
<th>Area Gamow peak ((I_{max} \Delta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+p</td>
<td>554</td>
<td>9.4</td>
<td>11.4</td>
<td>(2.2 \times 10^{-4})</td>
</tr>
<tr>
<td>(^{12})C+p</td>
<td>2020</td>
<td>38.0</td>
<td>22.9</td>
<td>(1.9 \times 10^{-18})</td>
</tr>
<tr>
<td>(^{12})C+(\alpha)</td>
<td>3429</td>
<td>89.1</td>
<td>35</td>
<td>(4.8 \times 10^{-44})</td>
</tr>
</tbody>
</table>

Reactions with the smallest Coulomb barrier produce most of the energy and are consumed rapidly

\(\rightarrow\) successive burning stages
Non-resonant reaction rates

Reaction rate:
\[
\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} S(0) \sqrt{\frac{\pi}{2}} I_{max} \Delta
\]

with \(S(E_0) \) in keV b:
\[
\langle \sigma v \rangle_{123} = 4.33 \times 10^5 \frac{\tau^2 \exp(-\tau)}{Z_1 Z_2 \mu_{amu}} S(E_0) \text{ cm}^3\text{mol}^{-1}\text{s}^{-1}
\]

Energy production rate

Temperature dependence
\[
\langle \sigma v \rangle_{123} \propto T^{(\tau-2)/3}
\]

In our Sun (now), \(T_6 \approx 16 \)

- \(\langle \sigma v \rangle_{p+p} \propto T^{3.9} \)
- \(\langle \sigma v \rangle_{12C+p} \propto T^{17.8} \)
Gamow window: your turn!

The $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ capture is one of the hot-CNO break-out reaction occurring in X-ray bursts at about 0.4 GK.

1) Calculate the Gamow peak energy and width in these conditions.
2) Calculate the corresponding excited energy range in the compound nucleus.
3) What are the relevant ^{19}Ne states for this reaction in these conditions? Use the nndc resource (https://www.nndc.bnl.gov/ensdf/)
4) What is the most likely contributing state to the $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ reaction rate?

Hint: find the state corresponding to the lowest orbital angular momentum

Useful information: $J^{\pi}(^{15}\text{O}) = 1/2^-$, $m(^{15}\text{O}) = 15.0031$ u, $m(^{4}\text{He}) = 4.0026$ u, $m(^{19}\text{Ne}) = 19.0019$ u, $u = 931.4$ MeV/c2
The $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ capture is one of the hot-CNO break-out reaction occurring in X-ray bursts at about 0.4 GK.

1) Calculate the Gamow peak energy and width in these conditions.
2) Calculate the corresponding excited energy range in the compound nucleus.
3) What are the relevant ^{19}Ne states for this reaction in these conditions? Use the nndc resource (https://www.nndc.bnl.gov/ensdf/)
4) What is the most likely contributing state to the $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ reaction rate?

Hint: find the state corresponding to the lowest orbital angular momentum

Useful information: $J^\pi(^{15}\text{O}) = 1/2^-$, $m(^{15}\text{O}) = 15.0031$ u, $m(^{4}\text{He}) = 4.0026$ u, $m(^{19}\text{Ne}) = 19.0019$ u, $u = 931.4$ MeV/c

Solutions:

1) $E_0 = 617$ keV; $\Delta = 337$ keV
2) $Q = S_\alpha = m(^{15}\text{O})c^2 + m(^{4}\text{He})c^2 - m(^{19}\text{Ne})c^2 = 3.539$ MeV
 \[\rightarrow \text{excitation energy range between } E_{x,\text{inf}} = S_\alpha + E_0 - \Delta/2 = 3978 \text{ keV} \]
 \[E_{x,\text{sup}} = S_\alpha + E_0 + \Delta/2 = 4315 \text{ keV} \]
3) $E_{x}(^{19}\text{Ne}) = 4033-$, 4140-, and 4197-keV
4) Entrance channel spin $s = 1/2$, $\pi = -1$;
 \[\rightarrow E_{x}(^{19}\text{Ne}) = 4033 \text{ keV } (3/2^+) \ell=1; 4140 \text{ keV } (9/2^-) \ell=4; 4197 \text{ keV } (7/2^-) \ell=4 \]
The narrow resonance case (1)

- Contribution to the reaction rate of a resonance at the energy E_R close to E_0:

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{BW}(E) e^{-E/kT} dE$$

with

$$\sigma_{BW}(E) = \pi \chi^2 \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}$$

- For a narrow resonance: Maxwell-boltzmann distribution \sim constant

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{E_Re^{-E_R/kT}}{(kT)^{3/2}} \int_0^\infty \sigma_{BW}(E) dE$$

- If the partial widths (Γ_i) are constants over $\Gamma << E_R$:

$$\int_0^\infty \sigma_{BW}(E) dE = 2\pi^2 \chi^2 \omega \frac{\Gamma_a \Gamma_b}{\Gamma}$$

$$\langle \sigma v \rangle_{123} = \left(\frac{2\pi}{\mu kT} \right)^{3/2} \hbar^2 \omega \gamma e^{-E_R/kT} \quad \omega \gamma = \omega \frac{\Gamma_a \Gamma_b}{\Gamma}$$

is the resonance strength
Contribution of a single narrow resonance to the stellar thermonuclear reaction rate:

\[N_A \langle \sigma v \rangle = 1.54 \times 10^{11} \left(AT_9 \right)^{-3/2} \omega \gamma \exp \left(-11.605 \frac{E_R}{T_9} \right) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1} \quad \text{with } \omega \gamma, E_R \text{ in MeV} \]

- **Resonance energy** E_R
 - Strong energy dependence (in exponential term!)
 - Few keV uncertainties in resonance energy implies large uncertainties on reaction rate
 - E.g. $\Delta E_R = 6 \text{ keV} \Rightarrow$ factor of 2 on the reaction rate!
 - $E_R = E_X - Q \rightarrow$ **Accurate excitation energies and masses are needed!**

- **Resonance strength** $\omega \gamma$
 - Depends mainly on the total (Γ) and partial widths (Γ_i)
 \[\omega \gamma = \frac{2J_R + 1}{(2J_a + 1)(2J_A + 1)} \frac{\Gamma_a \Gamma_b}{\Gamma} \]
 - Consider a resonant state with only two open channels: $\Gamma = \Gamma_a + \Gamma_b$
 - If $\Gamma_a \ll \Gamma_b$, then $\Gamma \approx \Gamma_b \Rightarrow \omega \gamma \approx \omega \Gamma_a$
 - If $\Gamma_b \ll \Gamma_a$, then $\Gamma \approx \Gamma_a \Rightarrow \omega \gamma \approx \omega \Gamma_b$
 - The reaction rate is determined by the smallest partial width
Resonant case: your turn!

The $^{13}\text{N}(\alpha,p)^{16}\text{O}$ reaction plays an important role in explosive He burning in massive stars at about 0.6 GK.

1) Calculate the Gamow peak energy and width in these conditions.
2) What is compound nucleus? Calculate the excited energy range of interest.
3) What are the relevant states for this reaction in these conditions? Say whether resonant states are narrow or broad (see https://www.nndc.bnl.gov/ensdf/).
4) Explain why these resonant states decay mainly by proton emission.
5) Write the resonance strength for the narrow states; what is the important parameter to be measured experimentally?
Resonant case: your turn!

The $^{13}\text{N}(\alpha,p)^{16}\text{O}$ reaction plays an important role in explosive He burning in massive stars at about 0.6 GK.

1) Calculate the Gamow peak energy and width in these conditions.
2) What is compound nucleus? Calculate the excited energy range of interest.
3) What are the relevant states for this reaction in these conditions? Say whether resonant states are narrow or broad (see https://www.nndc.bnl.gov/ensdf/).
4) Explain why these resonant states decay mainly by proton emission.
5) Write the resonance strength for the narrow states; what is the important parameter to be measured experimentally?

Solutions:

1) $E_0 = 732 \text{ keV}; \Delta = 449 \text{ keV}$

2) $E_{x,\text{inf}} = S_\alpha + E_0 - \Delta/2 = 6.327 \text{ MeV}$

3) $E_{x,\text{sup}} = S_\alpha + E_0 + \Delta/2 = 6.776 \text{ keV}$

4) $E_{x}(^{17}\text{F}) = 6560 \text{ keV } (\text{BR}), 6697 \text{ keV } (\text{NR})$

5) $\omega \gamma = \omega \Gamma_\alpha \Gamma_p / \Gamma$ with $\Gamma = \Gamma_\alpha + \Gamma_b$. Since $\Gamma_\alpha << \Gamma_p$, $\omega \gamma \approx \omega \Gamma_\alpha$

→ α-particle partial width (Γ_α) should be a prime objective for an experimental study
The general resonance case

• In the most general case, the Breit-Wigner formula with energy-dependent partial widths should be used

$$\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{BW}(E) E e^{-E/kT} dE$$

with

$$\sigma_{BW}(E) = \pi \chi^2 \omega \frac{\Gamma_a(E)\Gamma_b(E + Q)}{(E - E_R)^2 + (\Gamma(E)/2)^2}$$

⇒ numerical integration

• When the resonance is outside the Gamow peak
 • Contribution to the reaction rate through its tail
 • S-factor of resonance tail is slowly varying with energy
 → similar treatment as for the Direct Capture process

$^{24}\text{Mg}(p,\gamma)^{25}\text{Al}$ at $T = 50$ MK
A typical case: $^{13}\text{N}(\alpha,p)^{16}\text{O}$
Direct and resonant capture: $^{32}\text{Cl}(p,\gamma)^{33}\text{Ar}$

Spectroscopic information

TABLE V. Nonresonant direct capture transitions and the astrophysical S factors; resonance energies, γ widths, proton widths, and resonance strengths for $^{32}\text{Cl}(p,\gamma)^{33}\text{Ar}$.

<table>
<thead>
<tr>
<th>E_x</th>
<th>J^π</th>
<th>l_i</th>
<th>$n\ell_f$</th>
<th>C^2S_f</th>
<th>$S(E_0)$ (MeV b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>$\frac{1}{2}_{1}^+$</td>
<td>p</td>
<td>$2s_{1/2}$</td>
<td>0.080</td>
<td>7.00×10^{-3}</td>
</tr>
<tr>
<td>1.34</td>
<td>$\frac{3}{2}_{1}^+$</td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.185</td>
<td>2.62×10^{-3}</td>
</tr>
<tr>
<td>1.79</td>
<td>$\frac{3}{2}_{1}^+$</td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.145</td>
<td>2.74×10^{-3}</td>
</tr>
<tr>
<td>2.47</td>
<td>$\frac{3}{2}_{2}^+$</td>
<td>p</td>
<td>$2s_{1/2}$</td>
<td>0.031</td>
<td>6.16×10^{-3}</td>
</tr>
<tr>
<td>3.15</td>
<td>$\frac{3}{2}_{2}^+$</td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.068</td>
<td>1.46×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.516</td>
<td>3.01×10^{-3}</td>
</tr>
</tbody>
</table>

$S_0 = 3.34$ MeV

Reaction rate

Herndl, PRC52, 78 (1995)

Contribution of resonances vary as a function of temperature

Direct and Resonant Capture

- Direct capture: $p + ^{32}\text{Cl} \rightarrow ^{33}\text{Ar}$
- Resonant capture: $p + ^{32}\text{Cl} \rightarrow ^{33}\text{Ar}$

Reactant

- p + ^{32}Cl
- ^{32}Cl

Product

- ^{33}Ar

Spectroscopic Information

- Weak energy dependence of γ-ray width
- Strong energy dependence of proton width
- Resonance strength

Graph

- Logarithmic plot of reaction rate versus temperature
- Temperature range from 0.15 to 1.5 GK
- Energy levels $E_R = 0.63, 0.22, 0.85, 0.09$ MeV

Equation

$Q = 3.34$ MeV
Neutron capture reaction rates

- Neutrons in stars are quickly thermalized
 \[kT \text{ is the most probably capture energy} \]

- Non-resonant component
 - For \(s \)-wave (\(\ell = 0 \)) neutron capture
 \[\sigma(v) = \frac{K}{v} \quad K \text{ is a constant} \]

- Reaction rate:
 \[\langle \sigma v \rangle_{(n,\gamma)} = \int_0^\infty \sigma_{(n,\gamma)}(v) v \phi(v) dv = K \int_0^\infty \phi(v) dv = K \]
 \[\rightarrow \text{ constant reaction rate!} \]
 \[\rightarrow \text{ Independent of temperature} \]

- Resonant component
 \[\rightarrow \text{ Breit-Wigner treatment} \]

- Cross section can be measured directly

\[^7\text{Li}(n,\gamma)^8\text{Li} \]
Numerical calculation of reaction rates

• Ingredients for calculating reaction rates
 • Resonance energy
 • Resonance strength
 • S-factor
 • Partial widths
 • …

• It’s easy to compute a reaction rate…. → nominal reaction rate

\[
\left\langle \sigma v \right\rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E)E e^{-E/kT} dE
\]

• … but what about uncertainties?
 • Interferences
 • Spin/parity
 • Relation between resonance energy and partial widths

how do define “upper” / “lower” reaction rates?
Monte-Carlo approach

Experimental nuclear physics input

formalism

Resonance energy

Resonance strength

S-factor

Partial with Interferences

\[\langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma_{123}(E') E e^{-E/kT} dE \]

Reaction rate output

Log-normal density probability function:

\[f(x > 0) = \frac{1}{\sigma \sqrt{2\pi}} \frac{1}{x} \exp \left(-\frac{(\ln x - \mu)^2}{2\sigma^2} \right) \]
Low, recommended and high reaction rates

Schematic example

- $^{20}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}$ at 500 MK
- $E_R = 300 \pm 15$ keV
- $\omega \gamma = 4.1 \pm 0.2$ eV
- 10000 samples

- Definition of statistically meaningful thermonuclear reaction rates
 - Cumulative distribution function
 \[
 F(x) = \int_0^x f(x) \, dx
 \]
 - Low, recommended, high reaction rates \rightarrow 16th, 50th, 84th percentile of the cumulative rate distribution

RateMC code + evaluation of reactions involving targets in $A=14-40$ mass region

Iliadis+ NPA841, 31 (2010)
Additional effects in stellar environment

- In extreme stellar environments additional effects (other than temperature and density) affect the thermonuclear reaction rates
- In particular, experimental laboratory reaction rates need to be corrected (theoretically) to obtain stellar reaction rates
 - two main effects to consider

1) Thermally excited target
 - For high temperatures photons can excite the nuclei. Reactions on excited target nuclei can have different angular momentum and parity selection rules and have a somewhat different Q-value.

2) Electron screening
 - Atoms are fully ionized in a stellar environment, but the electron gas shields the nuclei and affects the effective Coulomb barrier.

 Reactions measured in the laboratory are also screened by the atomic electrons, but the screening effect is different
Thermally excited target nuclei

• At elevated stellar temperatures, the nuclei will be thermally excited → photoexcitation, inelastic scattering...

\[
\frac{N_{ex}}{N_{gs}} = \frac{2J_{ex} + 1}{2J_{gs} + 1} e^{-E_{ex}/kT}
\]

• The Stellar Enhancement Factor (SEF) is the ratio of stellar to laboratory reaction rates:

\[
SEF = \frac{N_A \langle \sigma v \rangle^*_{123}}{N_A \langle \sigma v \rangle_{123}} \quad \rightarrow \text{must be calculated theoretically}
\]

• Usually only a very small correction (SEF ~ 1) because \(kT \sim 1 – 100 \text{ keV}\) smaller than the level spacing at low energies (~ MeV)

• But should be considered (i) at high temperatures, (ii) when a low lying excited state exist in the target nuclei, (iii) when populated state has very different reaction rate (because of different spin, parity...)

→ example of \(^{26}\text{Al}\) isomeric state \(T_{1/2} = 6.34 \text{ s}\) at \(E_x = 228 \text{ keV}\)
Electron screening

- **In the laboratory**, reaction between a charged projectile and a neutral atom (in general)
 → electron screening of the Coulomb potential from the target nucleus

- **In stars**, atoms are ionized within an electron plasma
 → screening by the plasma electrons

Strategy:
- Estimate the cross section for the reaction between fully ionized nuclei (bare cross section σ_b)
- Deduce the stellar cross section, reaction rate from correction, which depends on stellar plasma conditions (ρ and T)
Electron screening in the laboratory

- Incident particle feels the following potential:
 \[V = \frac{Z_1 Z_2 e^2}{r} + U_s \]
 - Coulomb potential
 - Screening potential

- Screening potential is attractive \((U_s < 0)\)
 \[U_s = -\frac{Z_1 Z_2 e^2}{R_a} \]
 - \(R_a\) is the “characteristic” atomic radius

- Enhancement of the cross section for the neutral atom
 \[\frac{\sigma_s}{\sigma_b} \approx \exp \left(-\pi \eta U_s / E \right) \]

Additional effects
Electron screening in stars

- In stellar cores, ions are fully ionized and surrounded by electrons.
- In an almost perfect gas, the characteristic distance from the free electron cloud to the ion is the Debye-Hückel radius R_D.
- Corresponding screening potential:
 \[U_s = -\frac{Z_1 Z_2 e^2}{R_D} \]
- Shielded reaction rate:
 \[
 \langle \sigma v \rangle_{123} = \sqrt{\frac{8}{\mu \pi}} \frac{1}{(kT)^{3/2}} \int_0^\infty \! S_{123}(E) e^{-2\pi \eta} e^{-\pi \eta U_s/E} e^{-E/kT} dE
 \]
- Correction factor f:
 \[
 \langle \sigma v \rangle_{\text{screened}} = f_s \langle \sigma v \rangle_{\text{bare}} \quad \text{with} \quad f_s = \exp \left(-\pi \eta (E_0) U_s/E_0 \right) = \exp \left(-\frac{U_s}{kT} \right)
 \]
 (E_0 is the energy of the Gamow peak)

Additional effects
Bibliography

- **Nuclear Physics of Stars (2nd edition)**
 Christian Iliadis, Wiley-VCH Verlag GmbH & Co. KGaA, 2015
 ISBN 978-3-527-33648-7

- **Cauldrons in the Cosmos**
 Claus E. Rolfs & William S. Rodney, University of Chicago Press