Beyond the Standard Model: experimental aspects

Nikola Makovec

Who am 1?

I am a Chargé de Recherche at IJCLab

- 2002-2003: DEA CPM (now Master2 NPAC)
- 2003-2006: DO Member (Thesis)
- Since 2006: ATLAS Member

Main research interests:

- SUSY searches
- Vector Boson Scattering
- Jet and MET performance
- Design of a High Granularity Timing Detector for HL-HLC
\rightarrow explains some biases in these lectures

How to reach me:

- makovec@iiclab.in2p3.fr

The Standard Model

It looks like the Standard Model is a complete and consistent theory It describes all observed particle physics in particular at colliders With $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$, it can be extrapolated to the Plank scale without the need of New Physics

Physics beyond the SM: why?

What is the physics which reconciles gravity and quantum mechanics?

- New physics expected (at least) at energies $\sim 10^{19} \mathrm{GeV}$!

Why our Universe is made of only 5% of ordinary SM particles?

- Dark matter? Dark energy?

How to produce enough CP-violation to explain the matter-antimatter asymmetry in the universe?

Why do neutrinos have mass yet so light?

- Need right-handed neutrinos (add 7 (+2) parameters to the SM)

Why so many parameters?

- Why four fundamental interactions and not one?
- Why three generations?
- Origin of hierarchical Yukawa couplings?

Why the Standard Model is not natural?

- Coupling to a higher energy theory generically leads to the hierarchy problem

$$
m_{H}^{2}=m_{\text {bare }}^{2}+c . \Lambda_{N P}^{2} \quad \text { New physics at the TeV scale? }
$$

Physics beyond the SM: where?

Physics beyond the SM

Many BSM models developed to answer Standard Model limitations.

For instance:

- Supersymmetry: add a new broken symmetry to $S M$ to protect Higgs mass
- Composite Higgs: the Higgs is not elementary, first manifestation of a new strong force

How to look for physics beyond the SM?

- Energy frontier
- Direct searches for new heavy particles
- Need colliders with the largest possible energy
- Intensity frontier
- SM measurements with unprecedented accuracy requiring large luminosity
- Searches for rare decays or forbidden processes in SM (ex: $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ at NA62)
- Could be sensitive to higher mass scale than direct searches
- And also neutrino experiments and cosmological observations
- Not discussed in these lectures

Direct searches

Bump hunting

Excess in tails

Indirect searches

SM overconstraints \rightarrow consistency checks
Could be sensitive to higher mass scale than direct searches

Outline

1. From collisions to physics
2. Statistics for BSM searches
3. The Higgs boson: a portal to BSM physics
4. Search for supersymmetric particles
5. Selected topics in BSM physics

- Flavour physics
- Vector like quarks searches
- Heavy gauge boson searches

Homework:

- Before lecture 4, you should read this paper arXiv:1405.7875

References

CERN Summer Student Lecture Programme Course

- https://indico.cern.ch/category/345/

Results from LHC experiments

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- http://cms-results.web.cern.ch/cms-results/publicresults/publications/
- http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html

Additional references will be given along the lectures

Some ideas and material stolen from many people: H. Bachacou, N. Berger, M. Besancon, C. Botta, J. Boyd, C. Campagnari, C. Clément, J. Conway, G. Cowan, L. di Ciacco, A. Falkowski, P. Francavilla, T. Golling, C. Gütschow, J. Hewett, A. Hoecker, P. Janot, M. Kado, T. Lari, N. Leonardo, F. Meloni, A. Morais, N. Morange, C. Ohm, B. Petersen, G. Piacquadio, W. Pokorski, A. Pomarol, P. Pralavorio, J. Qian, L. Roos, M.-H. Schune, J. Shelton, P. Sphicas, L. Valery, W. Verkerke, M. Williams and many others

From collisions to physics

Nikola Makovec

Outline

- Outline

1. LHC
2. Detectors and particle reconstruction
3. Simulation
4. Cross-section measurements

- References
- Hard Interactions of Quarks and Gluons, J. Campbell et al.
- arXiv:0611148
- Lectures on Collider Physics, M. Schwartz
- arXiv:1709.04533
- Physics at the LHC Run-2 and Beyond, A. Hoecker
- arXiv:1611.07864

LHC

LHC

Few interesting facts:

- 9300 Magnets (among which 1232 bending dipoles) reaching 8.3T with current of 11,400 A.
- Beams are made of trains with a total nominal number of bunches of 2808 each containing approximately 100 billion protons.
- Bunches are separated within trains by 25 ns (approximately 7 m).
- Each proton has the kinetic energy of a mosquito and the total energy of the beams is $350 \mathrm{MJ} \sim 1$ TGV à 150 km/h.

Instantaneous luminosity

Luminosity is a function of the LHC beam parameters

$$
\frac{d N}{d t}=\sigma \cdot L_{\text {inst }}
$$

$$
L \cong \frac{f_{\text {rev }} n_{\text {bunch }} N_{p}^{2}}{A}=\frac{f_{\text {rev }} n_{\text {bunch }} N_{p}^{2}}{4 \pi \sigma_{x} \sigma_{y}} \quad[L]=\frac{1}{\mathrm{~s} \cdot \mathrm{~cm}^{2}}
$$

$10 \mathrm{nb}^{-1} \mathrm{~s}^{-1}=10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$
$\sim 1 \mathrm{GHz}$ interaction rate

- $f_{\text {rev }}=11245.5 \mathrm{~Hz}$ is the bunch revolution frequency
- $\quad n_{\text {bunch }}=1 \ldots 2808$ is the number of bunches in the machine
- $N_{p}=1.1 \times 10^{11}$ is the number of protons per bunch("bunch intensity")
- $\sigma_{x / y}=12 \ldots 50 \mu \mathrm{~m}$ is the transverse beam width characterising beam optics, $\sigma^{2}{ }_{x / y}=\varepsilon_{x / y} \beta^{\star}{ }_{x / y}$

Integrated luminosity

The highest possible instantaneous luminosity is not a goal per se. The challenge is to have the highest possible integrated luminosity in the best possible conditions for experiments

$$
\begin{aligned}
& L_{\mathrm{int}}=\int L d t \\
& N=\sigma \cdot L_{\mathrm{int}}
\end{aligned}
$$

Example: $\sigma_{\text {Higgs }}=50.6 \mathrm{pb}$
$\rightarrow \sim 7$ millions Higgs produced at the LHC run2

Luminosity comes at a cost: pile-up

Pile-up

Pile-Up: additional inelastic interactions per bunch crossings
It pollutes the reconstruction of the final state of the collisions (ex: deterioration of jet resolution, additional pileup jets,...) \rightarrow need methods to mitigate its impact

In time pile-up = pp collisions from the same bunch crossing Out of time pile-up = pp collisions from another bunch crossing

Detectors and particle reconstruction

ATLAS

CMS

CMS DETECTOR

Total weight
Total weight
Overall length
Magnetic field

STEEL RETURN YOKE
12,500 tonnes

14000 tons

15 m diameter, 28.7 m length.

3.8 T magnetic field.

CRYSTAL
ELECTROMAGNETIC CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator $\sim 7,000$ channels

ATLAS vs CMS

Sub System	ATLAS	CMS
Design		
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside
Inner Tracking	$\begin{gathered} \text { Pixels, Si-strips, TRT } \\ \text { PID w/TRT and dE/dx } \\ \sigma_{p_{T}} / p_{T} \sim 5 \times 10^{-4} p_{T} \oplus 0.01 \end{gathered}$	$\begin{gathered} \text { Pixels and Si-strips } \\ \text { PID w/dE/dx } \\ \sigma_{p_{T}} / p_{T} \sim 1.5 \times 10^{-4} p_{T} \oplus 0.005 \end{gathered}$
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_{E} / E \sim 10 \% / \sqrt{E} \oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_{E} / E \sim 3 \% / \sqrt{E} \oplus 0.5 \%$
Hadronic Calorimeter	Fe-Scint. \& Cu-Larg (fwd) $\underset{\sigma_{E} / E \sim 50 \% / \sqrt{E} \oplus 0.03}{\gtrsim} \quad \underset{11 \lambda_{0}}{\sim}$	$\begin{aligned} & \text { Brass-scint. } \gtrsim 7 \lambda_{0} \text { Tail Catcher } \\ & \sigma_{E} / E \sim 100 \% / \sqrt{E} \oplus 0.05 \end{aligned}$
Muon Spectrometer System Acc. ATLAS 2.7 \& CMS 2.4	Instrumented Air Core (std. alone) $\begin{aligned} \sigma_{p_{T}} / p_{T} & \sim 4 \%(\text { at } 50 \mathrm{GeV}) \\ & \sim 11 \%(\text { at } 1 \mathrm{TeV}) \end{aligned}$	Instrumented Iron return yoke $\begin{aligned} \sigma_{p_{T}} / p_{T} & \sim 1 \%(\text { at } 50 \mathrm{GeV}) \\ & \sim 10 \%(\text { at } 1 \mathrm{TeV}) \end{aligned}$

LHCb

Reconstruction

Reconstruction: algorithms to select and combine detector signals (ex: electrical current) into representative physics observables for experimental analysis

- First step: electric signal to energy conversion for each channels/pixels
- Second step: track finding and calorimeter cell clustering
- Third step: reconstruct physics objects (vertex, electron, jets, ...) and measure the kinematical properties

Best performance as possible: high efficiency, low fake rate, good resolution and linearity, pile-up stability,....

Very complex software (ATLAS: 2 millions c++ lines, 20s/event)

Worldwide LHC Computing Grid: store, distribute and analyse the $\sim 50-70$ Petabytes of data expected every year

Kinematics

In pp collisions the longitudinal momentum of the system is not known a priori, however the total transverse momentum is known to nearly vanish

The momentum of particle is not invariant under a longitudinal boost along $z \rightarrow$ transverse momentum

$$
p_{T}=p \sin \theta=\sqrt{p_{x}^{2}+p_{y}^{2}}
$$

The polar angle is not invariant under a longitudinal

$$
\begin{aligned}
& \text { Rapidity differences } \Delta y \\
& \text { are invariant Invariant } \\
& \text { under z-boost because: } \\
& y_{z-\text {-bost }}^{\prime} y-\ln \sqrt{\frac{1+\beta}{1-\beta}}
\end{aligned}
$$ boost along $z \rightarrow$ rapidity

$$
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
$$

Particles at the LHC are then described by 3 variables: pT, η (or y) and φ

Transverse view of a simplified detector

Tracker
Solenoid
EM calorimeter
Hadronic calorimeter Muon spectrometer

Electron

Muon spectrometer

Electron: reconstruction

Along with continuous tracking, the TRT provides electron identification capability through the detection of transition radiation X-ray photons which arises when ultra-relativistic charged particles cross a boundary between media with different dielectric constants

Discriminating variables

Lateral shower width

$$
w_{\eta 2}=\sqrt{\frac{\sum_{i} E_{i} \eta_{i}^{2}}{\sum_{i} E_{i}}-\left(\frac{\sum_{i} E_{i} \eta_{i}}{\sum_{i} E_{i}}\right)^{2}}
$$

More discriminating variables

More discriminating variables

https://root.cern.ch/tmva https://scikit-learn.org/

Rejection vs efficiency

Electron performance

Quite often the performance studies/training are made with simulation - How well do we know the performance in data?

- Need to correct for detector and modelling effects

(Unconverted) photon

Converted photon

Muon

Jets

Quarks/gluons can't be observed as free particles (confinement)
\rightarrow hadron jets

Need an algorithm to merge hadrons in a jet

Collimated sprays of energetic hadrons produced via the fragmentation of partons
Window on parton but there is no unique way to define a jet
Need a jet algorithm to group neighbouring objects into a single object

Jet inputs:

- Groups of calorimeter cells -> calorimeter jets or simply jets
- First merge cells into clusters or towers
- Tracks
- PFlow objects
- Truth particles
- Truth partons
- ...
calorimeter jet

Jets

B-jets

${ }^{\prime \prime \prime}$ " d	${ }^{1 / 2} 5$	b	$\underline{9}$
v_{e}	\underline{v}^{\prime}	v_{τ}	z^{0}
e	μ	τ	W

B-hadrons: $\mathrm{ct}_{\mathrm{b}}{ }^{\sim} 500 \mu \mathrm{~m}$

τ lepton

τ lepton (hadronic)

Hadronic τ : narrow jet with one or three tracks

Other instable particles

Missing transverse energy

$\sum_{i} \vec{p}_{T, i} \approx \overrightarrow{0}$
$\sum_{i} \vec{p}_{T, i}^{\text {vis. }}+\sum_{i} \vec{p}_{T, i}^{\text {inv. }} \approx \overrightarrow{0}$
$M \vec{E} T=-\sum_{i} \vec{p}_{T, i}^{\text {vis. }} \approx \sum_{i} \vec{p}_{T, i}^{\text {invis. }}$

Missing transverse energy

Example:

$$
M \vec{E} T=-\vec{p}_{T}^{\text {electron }}-\vec{p}_{T}^{\text {jet }}
$$

GATLAS hexperiment

Trigger

- First question: Why don't we just record every single event produced in ATLAS?
- Reason \#1: The data rates are too damn high!
- Nominal LHC bunch crossing rate is 40 MHz
- A raw ATLAS event is $\mathcal{O}(2 M B)$
- Back of the envelope, $\mathcal{O}(80 \mathrm{~TB} / \mathrm{s})$, $\mathcal{O}(288 \mathrm{~PB} / \mathrm{hr})$, $\mathcal{O}(6.9 \mathrm{~EB} /$ day $)$

Trigger

- Second question: Do we even want to record all events?

- Reason \#2: Most events are really quite boring (subjectively)
- Of the total cross-section $\mathcal{O}\left(10^{11} \mathrm{pb}\right)$
- Most collisions are inelastic
- Or jet production (it is a hadron collider)
- "Interesting" stuff (subjective) doesn't start for many orders of magnitude
- The more you record, the more you need to throw

Standard Model Production Cross Section Measurements
Status: July 2017
 away later

Trigger

- ATLAS deploys a multi-level trigger system alongside its detector readout
- Level-1:
- Hardware based trigger
- Fast, 2.2μ s latency
- Uses coarse data from calorimeters and muon system
- Reduces input rate to $75-100 \mathrm{kHz}$
- High-level trigger (HLT):
- Software based trigger
- Slower, $\mathcal{O}(1 s)$ latency
- Uses event data from all detectors
- Reduces input rate to $\mathcal{O}(1 \mathrm{kHz})$
- $\mathcal{O}(2 G B / s)$ recorded to tape

Simulation

Simulation

Simulation: 'virtual' experiment
Simulated data samples needed for

- Designing experiments
- Tuning analysis selections
- Background estimation

To get best physics outputs from the experiment it is essential to have an accurate simulation of the physics and the detector

Monte-Carlo generators at LHC

- The calculation of a collision is typically split up into the following steps:
- Parton Density Function (PDF)
- Proton collisions are really parton collisions. PDFs give the probability of a particular proton constituent having a particular fraction of the proton momentum.
- Hard-scatter
- Exact theoretical calculation up to stated accuracy (e.g. LO or NLO) of the ME
- Limit on the number of final state particles
- Valid for hard and well-separated partons
- Parton Shower (PS):
- QCD radiation matched to the matrix element (ISR/FSR)

Valid for soft and/or collinear partons

- Hadronisation/beam-remnants/MPI
- Phenomenological models describing non-perturbative physics
- Higher-order calculations blur these distinctions
- Complicated interplay between ME and PS
- Solutions: merging and matching (eg. CKKW, MLM)
- Many generators available on the market with different levels of accuracy, PS models,...
- Sherpa, MadGraph, Herwig, Powheg Box, Pythia,...
- Systematics uncertainties: renormalization and factorization scales, PDF, shower model, ...
- Need to find the one that best represents the data your are interested in
- More information in https://arxiv.org/abs/1101.2599

Detector simulation (aka transportation)

Simulation of the passage of the produced particles through the experimental apparatus using transportation code like Geant4.

- Propagates particles through geometrical structures of materials, including B field
- Simulates processes the particles undergo
- Calculates the deposited energy along the trajectories

Two ingredients:

Detector geometry

Physics lists

Validation of the tracker geometry

Validation of the tracker geometry

Simulation: conclusion

Accuracy vs CPU

In new physics searches:

- bkg: full simulation
- Signal: fast simulation

Validation and tuning of the simulation is mandatory to give best description of the data (testbeams and in-situ collisions)

Cross-section
measurements

Standard Model processes

Any new physics channel will have some SM physics backgrounds, so it is essential to check that the SM works in the new region of phase space opened up by the LHC

Moreover SM physics processes (particularly W and Z decays to leptons) provide 'standard candles' to understand and calibrate the detector performance

Cross-section measurements

Total cross-section:

$$
\sigma_{t o t}=\frac{N}{L}
$$

Cross-section measurements

Total cross-section:

$$
\sigma_{t o t}=\frac{N-N_{b k g}}{A \times \varepsilon \times L}
$$

Fiducial cross-section:

$$
\sigma_{f i d}=\frac{N-N_{b k g}}{\varepsilon \times L}
$$

Less model-dependant
$\sigma_{\text {tot }}$ is the total cross section for a given process (which includes the decay branching fractions)
N is the number of events observed after the selection cuts
$N_{\text {bkg }}$ is the expected number of backgrounds events (reducible or irreducible)
L is the integrated luminosity
ε is experimental efficiency (online and offline)
A is the the acceptance defined by the ratio of number of events produced in the fiducial volume to the total number of events. It is an extrapolation factor estimated by theory (typically with Monte Carlo)

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section @ $7 T e V$

	$\sigma_{Z / \gamma^{*} \rightarrow \ell \ell}^{\text {fid }}[\mathrm{pb}]$
$Z / \gamma^{*} \rightarrow e^{+} e^{-}$	502.7 ± 0.5 (stat) ± 2.0 (syst) ± 9.0 (lumi)
$Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$	501.4 ± 0.4 (stat) ± 2.3 (syst) ± 9.0 (lumi)
$Z / \gamma^{*} \rightarrow \ell \ell$	502.2 ± 0.3 (stat) ± 1.7 (syst) ± 9.0 (lumi)

Good agreement between channels

Improvement of the statistical uncertainty by combining the channels

Systematic uncertainties cover our

 lack of knowledge- Need to be determined on every aspect of measurement by varying assumptions within sensible reasoning
- There is no "correct way"
- Need to develop a "feeling" and discuss with colleagues / theorists!

Source	Electron	Muon
Trigger efficiency	0.03	0.05
Reconstruction efficiency	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 0}$
Identification efficiency	$\mathbf{0 . 1 6}$	$\mathbf{0 . 1 5}$
Lepton pT reso	0.01	<0.01
Lepton pT scale	0.08	0.03
Signal modeling (ME)	0.03	0.04
Signal modeling (PS)	$\mathbf{0 . 1 8}$	$\mathbf{0 . 2 2}$
PDF	0.09	0.07
Boson pT	0.01	0.04
Multijet bkg	0.03	0.07
Ewk+Top background	0.02	0.02
Bkg MC stat.	<0.01	0.01
Unfolding	0.04	0.02
Total	0.35	$\mathbf{0 . 4 3}$

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section: theory comparison

Current best knowledge: NNLO QCD and NLO EW

PDF set	$\sigma_{Z / \gamma^{*} \rightarrow \ell}^{\text {fid }}[\mathrm{pb}]$
ABM12	490.8 ± 5.7
CT14	481_{-14}^{+11}
HERAPDF2.0	497_{-9}^{+16}
JR14	484.4 ± 2.2
MMHT2014	$485_{-6.9}^{+7.4}$
NNPDF3.0	472.2 ± 7.2
Data	502.2 ± 9.2

Differential cross-section

$\omega \rightarrow \omega$ production cross-section

- Transverse mass

$$
M_{T}=\sqrt{2 E_{T 1} E_{T 2}\left(1-\cos \theta_{12}\right)}
$$

- Selection:
- 1 lepton with $\mathrm{pT}>25 \mathrm{GeV}$ (muon ou electron)
- MET>25GeV
- $M_{T}>40 \mathrm{GeV}$

$\omega \rightarrow e \nu$ production cross-section

Cross-section ratio \rightarrow

 cancellation of correlated systematic uncertainty (ex: lumi)| $R_{W^{+} / W^{-}}^{\mathrm{fid}}$ | 1.5006 ± 0.0008 (stat) ± 0.0037 (syst) |
| :--- | :--- |
| $R_{W / Z}^{\mathrm{fid}}$ | 9.780 ± 0.006 (stat) ± 0.049 (syst) |
| $R_{W^{+} / Z}^{\mathrm{fid}}$ | 5.869 ± 0.004 (stat) ± 0.029 (syst) |
| $R_{W^{-} / Z}^{\mathrm{fid}}$ | 3.911 ± 0.003 (stat) ± 0.021 (syst) |

Much more measurements

Standard Model Production Cross Section Measurements

Conclusion: what is important for BSM searches?

Accumulate the largest sample of collisions data

- The statistical uncertainties decreases as the square root of luminosity
- The significance of a search increase with the square root of the luminosity

High trigger efficiency

- Events rejected by the trigger are lost forever

Understand the performance of the detector

- The reconstruction of physics objects must be well mastered as well as the efficiency of the reconstruction and the calibration of the objects together with the uncertainties

Validation and tuning the simulation

- Physics generators
- Simulation of the detectors

Understand the physics background

- Need to measure SM processes and use data to be confident in "extreme" phase space regions

Info exam:

- Motivation for BSM physics
- What is supersymmetry? What is Higgs compositness? What is a vector-like quarks?
- Complementarity between direct and indirect searches
- Analysis techniques:
- Experimental signatures of SM particles
- Background estimation (simulation, CR, VR,...)
- Statistics: p-value, exclusion at $95 \% \mathrm{CL}$

The Standard Model of particle physics

Most general renormalizable lagrangian including all SM fields with $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ gauge groups:

$$
\begin{aligned}
\mathcal{L}_{S M}= & -\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}-\frac{1}{2 g^{2}} \operatorname{Tr}\left(W_{\mu \nu} W^{\mu \nu}\right)-\frac{1}{2 g_{s}^{2}} \operatorname{Tr}\left(G_{\mu \nu} G^{\mu \nu}\right) \\
& +\bar{Q}_{i} i \not D Q_{i}+\bar{L}_{i} i \not D L_{i}+\bar{u}_{i} i \not D u_{i}+\bar{d}_{i} i \not D d_{i}+\bar{e}_{i} i \not D e_{i} \\
& +\left(Y_{u}^{i j} \bar{Q}_{i} u_{j} \tilde{H}+Y_{d}^{i j} \bar{Q}_{i} d_{j} H+Y_{l}^{i j} \bar{L}_{i} e_{j} H+\text { h.c. }\right) \\
& +\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)-\lambda\left(H^{\dagger} H\right)^{2}-\mu^{2} H^{\dagger} H \\
& +\frac{\theta}{32 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(G_{\mu \nu} G_{\rho \sigma}\right)
\end{aligned}
$$

19 parameters:

- 3 gauge coupling constants
- 9 fermion Yukawa couplings
- 3 CKM mixing angles +1 phase
- μ, λ or $m_{z} m_{H}$
- $\theta_{\text {strong }}$

A very long list of models and signatures

- Many extensions of the SM have been developed over the past decades.
- 1 jet + MET
- jets + MET
- Supersymmetry
- Extra-Dimensions

- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley

- 1 lepton + MET
- Same-sign di-lepton
- Dilepton resonance
- Diphoton resonance
- Diphoton + MET
- Multileptons
- Lepton-jet resonance
- Lepton-photon resonance
- Gamma-jet resonance
- Diboson resonance
- Leptoquarks
- Compositeness
- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- $4^{\text {th }}$ generation (t , b')
- Slow-moving particles
- LRSM, heavy neutrino
- Long-lived particles
- Top-antitop production
- etc...
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
- etc...
(for illustration only)

A very long list of models and signatures

- Many extensions of the SM have been
- 1 jet + MET
developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- $4^{\text {th }}$ generation (t^{\prime}, b')
- LRSM, heavy neutrino
- etc...

- jets + MET
- 1 lepton + MET
- Same-sign di-lepton
- Dilepton resonance
- Diphoton resonance
- Diphoton + MET
- Multileptons
- Lepton-jet resonance
- Lepton-photon resonance
- Gamma-jet resonance
- Diboson resonance
- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- Slow-moving particles
- Long-lived particles
- Top-antitop production
- Lepton-Jets
- Microscopic blackholes
- Dijet resonance
(for illustration only)

A complex 2D problem
Experimentally, a signature standpoint makes a lot of sense:
\rightarrow Practical
\rightarrow Less modeldependent
\rightarrow Important to cover every possible signature

Pattern finding algorithms build tracks from discrete detector hits

Pattern finding algorithms build tracks)from discrete detector hits

Direct searches

In few cases, a direct search of new physics can be observed as a deficit of events due to interference between the signal and the background

Background

Need to understand the detector and its performance

3σ excess observed by CDF but further investigations showed that it is an artefact of jet energy (mis)calibration

Electron calibration

MC based calibration for:

- Loss in dead material
- Lateral leakage
- inhomogeneities in φ an η

Size: 5 et 15%

Jets

Sequential recombination algorithm:

- Find min of all dij and dib,
- If min is a dij, merge and iterate
- If min is a dib, classify as a final jet
- Continue until list is exhausted
$d_{i j}=\min \left(p_{t i}^{2 p}, p_{t j}^{2 p}\right) \Delta R_{i j}^{2} / R^{2}$
$d_{i B}=p_{t i}^{2 p}$
$p=1 \rightarrow \mathrm{kt}$ algorithm (KT)
$p=0 \rightarrow$ Cambridge Aachen algorithm (CA)
$p=-1 \rightarrow$ anti-kt algorithm (AK)

Jets

Jets

Jets

Why do we calibrate jets?

- Calorimeter non-compensation (e/h>1)
- Dead material: energy deposited in non-instrumented region
- Energy deposits below noise thresholds
- Pile-up
- Lateral leakage: particle shower outside the jet cone
- Longitudinal Leakage: energy deposited beyond the calorimeter region (punch-through)

How do we calibrate jets?

- Want to calibrate the jet energy at the particle level
- A combination of MC and in-situ data techniques employed to calibrate detector signals to physicslevel objects

Bethe-Bloch

LHCb: Ring-Imaging CHerenkov detectors

Charged particles faster than light produce cone of Cherenkov photons

$$
\cos \theta=\frac{1}{n \beta}
$$

By measuring the track momentum and θ, one can identify the particle type

$$
p=\gamma m v=m c \frac{\beta}{\sqrt{1-\beta^{2}}}
$$

Boosted unstable particles

Fully merged

Trigger menu

Final state	Thres.
Single electron	$26 \mathrm{GeV}(\mathrm{i})$
Di-electron	17 GeV
Photon	140 GeV
Single muon	$26 \mathrm{GeV}(\mathrm{i})$
Di-muon	14 GeV
Single tau	160 GeV
Single jet	420 GeV
Tri-jet	200 GeV
MET	110 GeV

Events rejected by the trigger are lost forever

Trigger: analyser point of view

Three Main Things

- Where is the trigger turn-on?
- Where does the trigger reach maximal efficiency w.r.t. offline objects?
- What is the peak efficiency?
- Is it 100% ? Or do you need a scale factor?
- Is it prescaled?
- Am I getting all the events? Or do I have to correct for a prescale?
- Turn on and peak efficiency are a function of:
- Resolutions
- Inefficiencies
- Online/Offline differences

Proton-proton collisions

For proton-proton collisions, phenomena at different energy scales factorize
A hard scattering collision, can be viewed at first order as the interaction between two partons of each proton each carrying a fraction x_{1} and x_{2} of the incoming protons

Parton distribution functions
Representing structure of proton, extracted using experimental data and QCD properties

Cross section is convolution of Parton Density Functions (PDF) with parton scattering Matrix Element

$$
\sigma(p p \rightarrow X)=\sum_{i, j} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}, Q^{2}\right) f_{j}\left(x_{j}, Q^{2}\right) d \hat{\sigma}\left(q_{i} q_{j} \rightarrow X, \hat{s}, Q^{2}\right)
$$

The centre-of-mass energy of the interaction is not known a priori: $\hat{s}=x_{1} x_{2} s<s$

LHC kinematic regime

13 TeV LHC parton kinematics

$$
x_{1,2}=\frac{M}{\sqrt{s}} e^{ \pm y}
$$

At $\mathrm{Q} \sim \mathrm{O}(\mathrm{TeV})$ New Physics cross-section predictions dominated by PDF uncertainties high x

NNLO, $\alpha_{\mathrm{s}}=0.118, \mathrm{Q}=100 \mathrm{GeV}$

Detector simulation

Treat a particle in steps

For each step

- the step length is determined by the cross sections of the physics processes and the geometrical boundaries; if new particles are created, add them to the list of particles to be transported;
- local energy deposit; effect of magnetic and electric fields;
- if the particle is destroyed by the interaction, or it reaches the end of the apparatus, or its energy is below a (tracking) threshold, then the simulation of this particle is over; else continue with anotherstep.

Output

- new particles created (indirect)
- local energy deposits throughout the detector (direct)

Fast simulation

Generation: a very simple example

QED process: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

2 independents variables: θ et φ

Differential cross-section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta \mathrm{~d} \varphi}=\frac{\alpha_{\mathrm{em}}^{2}}{4 \mathrm{~s}}\left(1+\cos ^{2} \theta\right)
$$

Total cross-section

$$
\sigma=\frac{\alpha_{\mathrm{em}}^{2}}{4 \mathrm{~s}} \int_{\Omega}\left(1+\cos ^{2} \theta\right) \mathrm{d} \theta \mathrm{~d} \varphi=\frac{4 \pi \alpha_{\mathrm{em}}^{2}}{3 \mathrm{~s}}
$$

In most cases, analytical computation are not possible \rightarrow compute integrals numerically with the Monte Carlo method using pseudorandom numbers and the acceptancerejection method ('hit or miss')

- Fast convergence in many dimensions

The Monte-Carlo method

How to compute π with random numbers?

$$
\hat{\pi}=4 \frac{N_{\text {red }}}{N_{\text {red }+ \text { green }}}
$$

Uncertainty decreases as $1 / \sqrt{ } \mathrm{N}$

Generation: a very simple example

For θ :

$$
f(\theta)=1+\cos ^{2} \theta
$$

Draw 2 random numbers uniformly:
θ between [-1,1]
y_{θ} between [0,2]
If $y_{\theta}>f(\theta)$ reject θ otherwise accept θ

For φ :

$$
f(\varphi)=\text { cte }
$$

Draw 1 random number φ uniformly between $[0,2 \pi]$

The list of accepted (θ, φ) values allows to build the list of simulated events with average and fluctuations right

Anatomy of proton-proton collisions

At parton level
\rightarrow hard scatter - matrix elements from first principles

$$
\hat{\sigma}=\alpha_{S}^{k}\left(\hat{\sigma}^{(0)}+\frac{\alpha_{S}}{\pi} \hat{\sigma}^{(1)}+\left(\frac{\alpha_{S}}{\pi}\right)^{2} \hat{\sigma}^{(2)}+\ldots\right)
$$

By truncating the perturbative series at a fixed order we have introduced a dependence of the cross section on an unphsical renormalisation scale, μ_{R}

Anatomy of proton-proton collisions

At parton level

By truncating the perturbative series at a fixed order we have introduced a dependence of the cross section on an unphysical renormalisation scale, μ_{R}

Anatomy of proton-proton collisions

Factorization theorem:

$$
\sigma(p p \rightarrow X)=\sum_{i, j} \int_{0}^{1} d x_{i} d x_{j} f_{i}\left(x_{i}, Q^{2}\right) f_{j}\left(x_{j}, Q^{2}\right) d \hat{\sigma}\left(q_{i} q_{j} \rightarrow X, \hat{s}, Q^{2}\right)
$$

Computed cross-section depends also on an unphysical factorization scale, $\mathbf{Q}=\mu_{\mathrm{F}}$

Parton density functions $f\left(x, Q^{2}\right)$

PDFs give the probability to find a parton with a momentum fraction x when probed with energy Q

PDFs are not calculable, but measured in DIS experiments (e.g. HERA) but also at the LHC

PDFs evolution in Q^{2} given are calculable (with DGLAP equations)

Flavour conservation sum rules:

$$
\begin{aligned}
& \int_{0}^{1}\left(f_{u}\left(x, Q^{2}\right)-f_{\bar{u}}\left(x, Q^{2}\right)\right) d x=2 \\
& \int_{0}^{1}\left(f_{d}\left(x, Q^{2}\right)-f_{\bar{d}}\left(x, Q^{2}\right)\right) d x=1 \\
& \int_{0}^{1}\left(f_{s}\left(x, Q^{2}\right)-f_{\bar{s}}\left(x, Q^{2}\right)\right) d x=0
\end{aligned}
$$

Anatomy of proton-proton collisions

\rightarrow hard scatter - matrix elements from first principles
\rightarrow incoming partons from parton-distribution functions (PDFs)
\rightarrow radiative corrections - resumming logarithms to all orders (parton showers)

Anatomy of proton-proton collisions

\rightarrow hard scatter - matrix elements from first principles
\rightarrow incoming partons from parton-distribution functions (PDFs)
\rightarrow radiative corrections - resumming logarithms to all orders
\rightarrow multiple parton interactions additional interactions between proton remnants

Anatomy of proton-proton collisions

\rightarrow hard scatter - matrix elements from first principles
\rightarrow incoming partons from parton-distribution functions (PDFs)
\rightarrow radiative corrections - resumming logarithms to all orders
\rightarrow multiple parton interactions additional interactions between proton remnants
\rightarrow hadronisation - going colourless

Anatomy of proton-proton collisions

\rightarrow hard scatter - matrix elements from first principles
\rightarrow incoming partons from parton-distribution functions (PDFs)
\rightarrow radiative corrections - resumming logarithms to all orders
multiple parton interactions additional interactions between proton remnants
\rightarrow hadronisation - going colourless
\rightarrow hadron decays - from excited states to final-state particles

$Z / \gamma^{*} \rightarrow e^{+} e^{-}$production cross-section: theory comparison

Current best knowledge: NNLO QCD and NLO EW

