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Statistics in particle physics
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Discovery plot Exclusion plot

The goal of this lecture is to understand how these plots 
are made and how to interpret them



Outline and references
Outline:

1. Probability density function
2. Parameters estimation with the method of maximum likelihood
3. Modelling the data
4. Hypothesis tests

1. Discovery 
2. Exclusion

References:
 Statistical data analysis, G. Cowan (Oxford University Press)

 A reference book covering the basic of statististics for HEP

 Statistics for searches at the LHC, G. Cowan
 https://arxiv.org/abs/1307.2487
 Include material not covered in his book (eg: CLs, Profile-Likelihood,…)

 Introduction to Statistical Methods for High Energy Physics, G. Cowan
 https://indico.cern.ch/event/134153/
 Summer Student Lecture Programme Course

 Foundations of statistics, A. Hoecker
 https://indico.cern.ch/event/713464/
 Summer Student Lecture Programme Course

 Statistical analysis methods in HEP, N. Berger 
 https://indico.lal.in2p3.fr/event/4738/
 LAL Winter Lecture
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Probability density function
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Probability distribution
A random variable represents the outcome of a repeatable 
experiment whose result is uncertain. 

Probabilistic treatment of possible outcomes

→ Probability distribution for discrete variables

Properties:

Example: two dices roll probability
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Probability density function (pdf)
A random variable can also be a continuous variable

→ Probability distribution function: p(x)

p(x)dx gives the probability that x is observed in [x, x + dx]

Properties:
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Properties
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The variance represents the width of the PDF about the mean

Convenient to express this in terms of the standard deviation  σ=√V

Higher moment (like skew) can be defined and are not very useful in practice



Poisson distribution

Properties:
 E[x]=λ
 V[x]= λ
 .

An example of a Poisson random variable is the number of events of a certain type 
observed in a particle scattering experiment with a given integrated luminosity L in the 
limit that the total number of events is very large and the probability for an individual 
decay within the time period is very small.

The Poisson distribution approaches the Gaussian distribution for large .
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Gaussian (aka Normal) distribution

Properties:

 E[x]=μ

 V[x]=σ2

Thanks to the Central Limit Theorem Limit (CLT), the Gaussian pdf plays an important 
role in statistics
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Common probability density functions
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Joint probability distribution
The concept of probability density function can be generalized to 
several dimensions (joint probability distribution). 

For instance in 2D, p(x,y) measures the probability density per unit area:

Properties:
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p(x,y)dxdy gives the probability that x is observed 
in [x, x + dx] and y in [y,y+dy]



Maximum likelihood fits
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Parameter estimation

13G. Cowan



The likelihood function
Suppose the entire result of an experiment (set of measurements) is a 
collection of numbers x= =(x1,…xn), and suppose the joint pdf for the 
data x is a function that depends on a set of parameters θ:

Now evaluate this function with the data obtained and regard it as a 
function of the parameter(s). This is the likelihood function

The likelihood function gives for fixed data, the relative likelihood of 
various parameters.

The probability density function gives for fixed parameters, the 
probability density of various possible data.
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Maximum likelihood estimators
If the hypothesized θ is close to the true value, then we expect a 
high probability to get data like that which we actually measured

So we define the maximum likelihood (ML) estimator(s) to be the 
parameter value(s) for which the likelihood is maximum

In practice, one prefer to minimize -ln L(θ)  or -2ln L(θ) 

Maximum likelihood estimators (MLE) not guaranteed to have any 
‘optimal’ properties (bias, variance) but in practice they’re very 
good.
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MLE: the Gaussian example
Suppose we have a sample of N observed values {xi} and 
that the underlying distribution is a Gaussian
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μ? σ?

Measurements:
1. 94.0
2. 88.3
3. 93.1
4. 89.9
5. 93.3
6. 89.8
7. 86.4
8. 89.7
9. 90.0
10. 88.4
11. 95.6
12. 86.1
13. 89.8
14. 84.2
15. 85.8
16. 84.4
17. 93.1
18. 87.1
19. 92.3
20. 88.5



MLE: the Gaussian example
The likelihood to measure xi for one measurement is :

The likelihood to measure (x1,…xn) is the product of the 
individual likelihoods:
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MLE: the Gaussian example
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MLE: the Gaussian example
The likelihood:

But it is more convenient to work with:

The minimization of –lnL(μ,σ) gives:
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MLE: the Gaussian example
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1/2

μ=89.5±1.0^

Assuming σ known :

If the likelihood is Gaussian (true in the for large N), one can estimate the 1σ confidence interval 
for (“parameter uncertainty”) by finding intersections − = 1/2 around minimum
If we repeat the experiment many times, [ -σ, +σ] will contain the true value 68% of the time



MLE: the Gaussian example

Uncertainty decreases as 1/√N
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N=20                                                       N=80

μ=89.5±1.0^ μ=89.7±0.5^



MLE: the Gaussian example
σ and μ unknown
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In most of the realistic cases, the minimization is performed with numerical methods 
implemented as computer algorithms (ex: Minuit)



A real example
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Modeling the data
which likelihood should I use?
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Counting experiment
Observable: number of events (n)

PDF: Poisson distribution
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Shape analysis
Observable: set of values m1,…,mn
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Shape analysis
Observable: set of values m1,…,mn

27





n

i
in mfnPmmL

1
1 )().(),...(  |||

μ is called signal strengh parameter

Probability to measure mi

)()( ibis mf
bs

b
mf

bs

s




 


Pdf for the 
signal 

hypothesis

Pdf for the 
background 
hypothesis



Shape analysis
Observable: set of values m1,…,mn
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Shape analysis
Observable: set of values m1,…,mn
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Shape analysis
Observable: set of values m1,…,mn
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Binned shape analysis

31Note that in this case, there are several background components.

Observable: number of events in the bins of an histogram



Binned shape analysis
Observable: number of events in the bins of an histogram

Nbins=1: counting analysis

Nbins=∞: unbinned shape analysis ( the fraction becomes pdf values)

Faster to work with binned likelihood compared to unbinned likelihood
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Introducing nuisance parameters
1) The background can be constrained by the data using a control region where the 
number of events is noted m

Here b is treated as a nuisance parameter. If bCR=τb ≠ mmeas, need to adjust b to 
maximize the likelihood. 

In general, there should also be also an uncertainty on τ which is in general relatively
smaller than the uncertainties on b and bcr

2) Counting experiment with systematic uncertainty on b (ex: uncertainty on the bkg
cross-section):

where θ is a nuisance parameter constrained to θ=1 within σθ by a Gaussian PDF 
(penalty for θ ≠ 1)
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Introducing nuisance parameters
1) The background can be constrained by the data using a control region where the 
number of events is noted m

Here b is treated as a nuisance parameter. If τb ≠ mmeas, need to adjust b to 
maximize the likelihood. 

In general, there should also be also an uncertainty on τ which is in general relatively
smaller than the uncertainties on b and bcr

2) Counting experiment with systematic uncertainty on b 

(ex: uncertainty on the bkg cross-section):

where θ is a nuisance parameter constrained to θ=1 

within σθ by a Gaussian PDF (penalty for θ ≠ 1)
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Nuisance parameters
More generally, we write the likelihood as

μ is a parameter of interest. In some cases, there can be several ( signal 
strengh parameter, mass,…) 

θ represent the nuisance parameters needed  to define the model (ex: 
syst. uncertainties) 

NPs must be either
→ known a priori (possibly within systematics)
→ constrained by the data (e.g. in sidebands)
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Combining analyses
The combined likelihood is obtained by multiplying the likelihood 
functions of individual channels in order to

The main challenge is to properly deal with the correlation of the 
nuisance parameters

 Ex: luminosity is fully correlated between analysis, theory uncertainties could be 
very tricky

Combination can be done within one experiment or between 
different experiments
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Hypothesis testing:
discovery case
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Hypothesis testing
A key task in most of the experiments is to discriminate between two 
hypothesis on the basis of the observed experimental data ( )

 H0, null hypothesis that we want to disprove (eg, SM background only)

 H1, alternative hypothesis (eg, SM background + new physics)

The goal of a hypothesis test is to determine whether the observed data 
sample better agrees with H0 or rather with H1

Test statistics: a scalar variable (called t( )) computed from the data 
that discriminates between the two hypotheses H0 and H1. Usually a 
‘summary’ of the information available in the sample
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A simple example: counting experiment
Observable: number of events (n)

PDF: Poisson distribution

Test statistics: number of events (t(n)=n)
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Hypothesis testing
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β is the probability to accept the null 
hypothesis when the alternative is true

α is the probability to reject the null 
hypothesis when it is true



Hypothesis testing

41

β is the probability to accept the null 
hypothesis when the alternative is true

α is the probability to reject the null 
hypothesis when it is true

Difficult to minimize the two at the same time!



Neyman-Pearson lemma
When comparing two simple hypotheses H0 and H1, the optimal discriminator is the 
Likelihood ratio (LR):

It minimizes Type-II uncertainties (β) for a given level of Type-I uncertainties (α)

Any monotonic function of the likelihood ratio is also optimal (ex: q(𝑥⃗)=-2 ln t(𝑥⃗))

Caveat: Neyman-Pearson Lemma holds strictly only for simple hypotheses without free 
parameters (ex: Higgs boson search, the mass is a free parameter)

However: the likelihood ratio is a very convenient test statistic (probably close to 
optimal)  and therefore commonly used in experimental particle physics

Different versions of the likelihood ratio are used in statistical tests
42
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Procedure
Specify the null hypothesis that you want to disprove and the alternate hypothesis

 Ex for discovery: H0=SM background only, H1=BSM

Build you test statistic: t(x) using for instance the Neyman-Person lemma
 Ex: counting experiment → number of events (demonstration later)

Specify the significance α of the test (how likely you are willing to claim a false discovery)
 Set to 2.9.10–7 (5σ) for the discovery  or 0.05 for exclusion

Take the measurement: tobs

Check whether tobs lies inside or outside of critical region  → decide on H0 

Compute p-value of H0 to see how deep it lies in the critical region

43tobs
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Significance and p-values
It is convenient to express the observed p-values in terms of a Gaussian σ

The other way around:
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Application to counting experiments
In this case, the likelihood ratio is (using the Neyman-Person lemma):

where μ is the signal strength parameter (proportional to the cross 
section for the signal process whose existence is not yet established) 

And the negative log likelihood (NLL) ratio is

Since t(n), q(n) and n are monotonic, they conveys the same level of 
information → can use n as a test statistics
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Exercise 1
Counting experiment with 1.5 expected background events 

7 events are observed in the data

What is the corresponding p-value? 

Is it a discovery, an evidence or nothing?
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Application to shape analyses
The likelihood ratio is given by:

and the negative log likelihood (NLL) ratio is
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Generate pseudo data (toys) using the PDF under the tested hypothesis

Compute the p-value as the fraction of toy events giving a value larger than qobs

Precision limited by the number of toys events
 Small p-values (5σ : p~10-7) → Need a very large number of toys

Analytical computation is preferred when available and fortunately there is a solution…

Toy MC simulation to compute p-value

48

Toy 
simulation

Compute q for 
each toy 

simulation

…
…



Profile likelihood ratio

In the presence of nuisance parameters, one used the profile likelihood ratio (PLR) as 
the test statistics instead of the likelihood ratio (LR):

By definition, λ(μ) lies between 0 and 1

Higher values indicating greater compatibility between the data and the hypothesized 
value of μ

Good properties in the large sample limit allowing analytical computation 
49
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Test statistics for discovery
Try to reject background-only (μ = 0) hypothesis using

i.e. here only regard upward fluctuation of data as evidence against the 
background-only hypothesis.  This is a "one-sided" definition (only claim 
signal for >0)
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Test statistics for discovery
Try to reject background-only (μ = 0) hypothesis using

i.e. here only regard upward fluctuation of data as evidence against the 
background-only hypothesis.  This is a "one-sided" definition (only claim 
signal for >0)

51
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Test statistics for discovery
Try to reject background-only (μ = 0) hypothesis using

i.e. here only regard upward fluctuation of data as evidence against the 
background-only hypothesis.  This is a "one-sided" definition (only claim 
signal for >0)
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Test statistics for discovery
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Example for counting experiment
Poisson likelihood with p.o.i μ (n events observed):
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Example for counting experiment
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Example for shape analysis
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Example for shape analysis

Profile likelihood broadened by nuisance parameters θ (loss of information)

Since 𝑍 = −2ln (λ(0)), one could compute the significance directly from the right plot using the intercept 
of the curves Z=√(2*4)=2.8 and Z= √(2*6.6)=3.6 with and without uncertainties respectively
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Example for shape analysis

Profile likelihood broadened by nuisance parameters θ (loss of information)

Since 𝑍 = −2ln (λ(0)), one could compute the significance directly from the right plot using the intercept 
of the curves Z=√(2*4)=2.8 and Z= √(2*6.6)=3.6 with and without uncertainties respectively
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True parameters: b=100 and s=40

௕

௕ .3

Excess observed!μො = 0.67 ± 0.2

μ
Minimum of the profile likelihood ratio



A realistic example
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Observation of ttH production

arXiv:1804.02610
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The Higgs p0 plot

The “local” p0 means the p-value of the background-only hypothesis obtained from the 
test of μ = 0 at each individual mH.
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Hypothesis testing:
exclusion

61



Exclusion

Procedure similar to the discovery case except 
that the hypothesis are now inverted

 H0= signal + background hypothesis 
 H1= background only hypothesis 

Goal: disprove 𝟎 by estimating the probability 
of downward fluctuation of signal + background

Size of the test less stringent than for the 
discovery case: α =5%

Confidence level of the test is 1-α =95% 
confidence level

Upper limit: find minimal signal, for which 𝟎 can 
be excluded at specified confidence Level

 Smaller signal level satisfying p-value> α
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Not OK
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Exercise 2
Counting experiment with 0 expected background events and 2.5 
expected signal events

0 events are observed in the data

Is the signal hytpothesis excluded?

What is the upper limit on the signal?
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Test statistics for exclusion
For purposes of setting an upper limit on μ one may use

Note for purposes of setting an upper limit, one does not regard an upwards 
fluctuation of the data as representing incompatibility with the hypothesized μ.
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In the large sample (asymptotic) limit, 
one has this simple relation:

Gaussian cumulative distribution function

bsCL a.k.a

More signal-like



CLs

The problem:

Consider the case of low sensitivity: f(qμ|μ) and f(qμ|0) very similar

(example: B=10 and S=0.001, S is true but you measure 6)

By construction the probability to reject μ if μ is true is α (e.g., 5%)

→ spurious exclusion in 5% of the case
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pµ



CLs

If the two distributions are very well separated 
then 1−CLb will be very small CLb ~1 and 
CLs ~ CLs+b , i.e: the ordinary p-value of the 
s+b hypothesis

If the two distributions are very close than 
1−CLb will be large CLb small, preventing 
CLs to become very small
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b
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s CL
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CL 


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

H0 H1

pb=

“approximation to the confidence in the signal 
hypothesis, one might have obtained if
the experiment had been performed in the complete 
absence of background”



CLs
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Conclusion: statistics for BSM searches
 Build the likelihood that represents the measurements

 Observables: counting experiment, unbinned shape analysis or binned analysis
 Main parameters that we want to measure: parameter of interests 

 ex: signal strengh parameter (μ) or mass
 The other parameters are called nuisance parameters (𝜃)

 ex: syst. uncertainties or auxiliary measurements

 Parameter estimation via likelihood maximisation

 Hypothesis testing:
 Specify the null hypothesis that you want to disprove and the alternate hypothesis

 Ex for discovery: H0=SM background and H1=BSM

 Build you test statistic: t(x) 
 Often based on likelihood ratio
 Counting experiment: number of events

 Specify the significance α of the test (how likely you are willing to claim a false discovery)
 Set to 2.9.10–7 (5σ) for the discovery  or 0.05 for exclusion

 Compute the p-value: probability of obtaining test results at least as extreme as the results 
actually observed, under the assumption that the null hypothesis is correct

 If the p-value is smaller than α then the hypothesis H0 is rejected 68
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Solution 1
p0=1 -(0.2231+0.3347+0.2510+0.1255+0.0471+0.0141+0.0035)~0.001 → Z=3.09
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5σ

Z=s/√b=(7-1.5)/√1.5=4.49 → p=3.5×10-6 Gaussian approximation not applicable in this case

=3.25 → p=0.0006



Solution 2

For n=0, we have:

The upper limit is defined by p<α=0.05 gives
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!
),(

n

es
snP

sn 



𝑝 = 𝑃(0 ; 𝑠) = 𝑒ି௦

305.0ln s is excluded

H0 with b=0:

exp(-2.5)~0.08  => not excluded

H0:P(n,2.5)

H1:P(n,0)

ି௦<0.05



Covariance and correlation

72A. Hoecker

Expectation              Variance



2D Gaussian (μx=μy=0)
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Marginal pdf:

Covariance matrix:

general case recovers with x→x-μx and y → y-μy



2D Gaussian (μx=μy=0)
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Marginal pdf:Covariance matrix:

general case recovers with x→x-μx and y → y-μy



2D Gaussian
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ρ=0

ρ=0.5 ρ=1

ρ=-0.5 ρ=-1



The Higgs brazil plot
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For every value of mH, find the CLs upper limit on μ (CLs(μup)=0.05) 



Systematic uncertainties
The uncertainties we have dealt with so far are statistical uncertainties

 “Random noise”, not correlated between events

 Decrease usually as 1/√n.

Systematic uncertainties:
 Can have underlying bias in the measurement (ex: luminosity, energy calibration)

 Same for all the events : does not improve with more data

 Can be constrained from data or with an auxiliary measurement (ex: luminosity)
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Shape analysis
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MLE: the Gaussian example
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Statistics in particle physics

In particle physics, we want to:
 Measure a quantity (ex: Higgs mass): parameter estimation

 The best estimate of the true parameter with lowest uncertainty as possible based on the data

 Test a theory (ex: SUSY): hypothesis testing
 Which model best describes the data: “a relative probability”

Theory Data

2) Statistical inference

1) Probability computation
(using MC techniques)



Expected significance

81G. Cowan



The Central Limit Theorem
 For an observable =(x1,…xn) any

 Suppose we draw a random sample =(x1,…xn) from 
a population random variable that is distributed with 
mean µ and standard deviation σ.

82A. Hoecker



The Central Limit Theorem
 For an observable =(x1,…xn) any

 Suppose we draw a random sample =(x1,…xn) from 
a population random variable that is distributed with 
mean µ and standard deviation σ.

83A. Hoecker
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The Central Limit Theorem
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Correlation
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Properties of estimators

86G. Cowan

𝑖



Look elsewhere effect
 Voir Lista, Cowan, Berger

87N. Berger



Now with uncertainty on b
Since standard deviations add in quadrature, one has:

A better approximation is given by:
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The Higgs plot

89G. Cowan

Standard Model



MLE: the Gaussian example
Suppose we have a sample of N observed values {xi} and 
that the underlying distribution is a Gaussian

90

N=20

Measurements:
1. 94.0
2. 88.3
3. 93.1
4. 89.9
5. 93.3
6. 89.8
7. 86.4
8. 89.7
9. 90.0
10. 88.4
11. 95.6
12. 86.1
13. 89.8
14. 84.2
15. 85.8
16. 84.4
17. 93.1
18. 87.1
19. 92.3
20. 88.5



MLE: the Gaussian example

91

(1σ)

(2 σ)



MLE: the Gaussian example
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1σ level contour

2σ

MLE

Truth

2σ level contour



Procedure
Specify the null hypothesis that you want to disprove

 Ex: H0=SM background only for discovery

Build you test statistic: t(x)
 Ex: counting experiment → number of events

Specify the significance α of the test (how likely you are willing to claim a false discovery)
 Set to 2.9.10–7 (5σ) for the discovery  or 0.05 for exclusion

Take the measurement: tobs

Check whether tobs lies inside or outside of critical region  → decide on H0 

Compute p-value of H0 to see how deep it lies in the critical region

93tobs





obst

Htpdfvaluep )( 0|

p-value : fraction of outcomes that are at least 
as H1-like (signal-like) as data, when H0 is true 
(no signal present).

P(data|theory) != P(theory|data)

Example:

Theory = (male or female)
Data = (pregnant | not pregnant)
P(pregnant | female) ~ 3% 

BUT
P(female | pregnant) ≠ 3%

P(female | pregnant) =   P(pregnant | female)*P(female)/P(pregnant)


