Searches for supersymmetric particles

Nikola Makovec

Outline and References

Outline

- 1. Phenomenology
- 2. Squarks and gluinos searches
- 3. A detailed example: the 0 lepton analysis
- 4. Searches for additional Higgs bosons

References

- A Supersymmetry Primer
 - S. Martin
 - hep-ph/9709356
- Supersymmetry part I and II
 - PDG review
 - http://pdg.lbl.gov/2018/reviews/rpp2018-rev-susy-1-theory.pdf
 - http://pdg.lbl.gov/2018/reviews/rpp2018-rev-susy-2-experiment.pdf
- Weak-scale Supersymmetry
 - H. Baer and X. Tata
 - Cambridge, 2006

Phenomenology

Supersymmetry

Supersymmetry (SUSY): a symmetry between bosons and fermions

It is the unique extension of the Poincaré algebra

- P_{μ} (translations)
- M_{μν} (rotations and boosts)
- Q_α (SUSY transformation)

$$\{Q_{\alpha}, Q_{\beta}\} = (\gamma^{\mu})_{\alpha\beta} P_{\mu}$$

SUSY scale could be anywhere from 0 up to M_{Pl} but...

1. Solves the Higgs naturalness problem

1. Solves the Higgs naturalness problem

1. Solves the Higgs naturalness problem

Broken SUSY still provides a solution to the hierarchy problem if superparticles have mass at the TeV scale or below

- 1. Solves the Higgs naturalness problem
- 2. Opens the door to GUT

- 1. Solves the Higgs naturalness problem
- 2. Opens the door to GUT
- 3. Provides a Dark Matter candidate

Minimal Supersymmetric Standard Model (MSSM)

Quark			
(spin 1/2)	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	<i>U</i> _R	d_R
	$\begin{pmatrix} c \\ s \end{pmatrix}_L$	C_R	SR
	$\begin{pmatrix} t \\ b \end{pmatrix}_L$	t_R	b_R
Leptons			
(spin 1/2)	$\begin{pmatrix} v_e \\ e \end{pmatrix}_L$	e_R	
	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{L}$	μ_R	
	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array} \right)_{L}$	$ au_R$	
Gauge bosons			
(spin 1)	g		
	γ		
	Z		
	W^{\pm}		
Higgs bosons			
(spin 0)	h^0		

Minimal .	Supersy	ymn	net	ric	Sta	ndard	Ma	odel	(MS	5M)	
Quark				Squa	<u>rk</u>						
(spin 1/2)	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	<i>U</i> _R	d_R	(spin	0)	$\left(\begin{array}{c} \widetilde{u} \\ \widetilde{d} \end{array} \right)_L$	\tilde{u}_R	\tilde{d}_R			
	$\begin{pmatrix} c \\ s \end{pmatrix}_L$	C_R	S_R			$\begin{pmatrix} \tilde{c} \\ \tilde{s} \end{pmatrix}_L$	\tilde{c}_R	\widetilde{s}_R			
	$\left(\begin{array}{c} t \\ b \end{array} \right)_L$	t_R	b_R			$\left(\begin{array}{c} \widetilde{t} \\ \widetilde{b} \end{array} \right)_L$	\tilde{t}_R	\tilde{b}_R			
Leptons				Slept	ons						
(spin 1/2)	$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	e_R		(spin	0)	$\left(\begin{array}{c} \tilde{v}_e\\ \tilde{e} \end{array}\right)_L$	\tilde{e}_R				
	$\left(\begin{array}{c} u_{\mu} \\ \mu \end{array} ight)_{L}$	μ_R				$\left(egin{array}{c} \widetilde{ u}_{\mu} \\ \widetilde{\mu} \end{array} ight)_L$	$\tilde{\mu}_R$				
	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array} \right)_{L}$	$ au_R$				$\left(\begin{array}{c} \widetilde{\nu}_{ au} \\ \widetilde{ au} \end{array} ight)_L$	$\tilde{\tau}_R$				
Gauge bosons											
(spin 1)	g										
	γ										
	W^{\pm}										
Higgs bosons											
(spin 0)	h^0										

Particles and Fundamental Interactions, Braibant et al

Minimal	Supersy	m	net	ric Sta	andard	Ma	odel	(MSSM)	
Quark				Squark					Partic
(spin 1/2)	$\left(\begin{array}{c} u\\ d\end{array}\right)_L$	u_R	d_R	(spin 0)	$\left(\begin{array}{c} \widetilde{u} \\ \widetilde{d} \end{array} \right)_L$	\tilde{u}_R	\tilde{d}_R		les and F
	$\left(\begin{array}{c} c\\ s \end{array} \right)_L$	C_R	S_R		$\left(\begin{array}{c} \widetilde{c}\\ \widetilde{s} \end{array}\right)_L$	\tilde{c}_R	\tilde{s}_R		undament
	$\left(\begin{array}{c} t\\ b \end{array} \right)_L$	t_R	b_R		$\left(\begin{array}{c} \widetilde{t} \\ \widetilde{b} \end{array} \right)_L$	\tilde{t}_R	\tilde{b}_R		al Interac
Leptons				Sleptons					tions,
(spin 1/2)	$\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L$	e_R		(spin 0)	$\left(\begin{array}{c} \widetilde{v}_e \\ \widetilde{e} \end{array} \right)_L$	\tilde{e}_R			Braibant
	$\left(\begin{array}{c} u_{\mu} \\ \mu \end{array} ight)_{L}$	μ_R			$\left(egin{array}{c} \widetilde{ u}_{\mu} \\ \widetilde{\mu} \end{array} ight)_L$	$\tilde{\mu}_R$			et al
	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array} \right)_{L}$	$ au_R$			$\left(egin{array}{c} \widetilde{ u}_{ au} \\ \widetilde{ au} \end{array} ight)_L$	$\tilde{\tau}_R$			
Gauge bosons				Gauginos					
(spin 1)	g			(spin 1/2)	\widetilde{g}				
	γ				$\widetilde{\widetilde{\gamma}}$				
	$Z_{W^{\pm}}$				$Z_{\tilde{W}^+}$				
Higgs bosons	W^{\perp}			Higgsings	W^{\pm}				
(spin 0)	$h^0 H^0 \Lambda^0$			$\frac{112gs(10)}{(spin 1/2)}$	\widetilde{H}^0 \widetilde{H}^0				
(spin 0)	H^{+}, H^{-}			(spin 1/2)	\tilde{H}_u, \tilde{H}_d $\tilde{H}_u^+, \tilde{H}_d^-$				12

Minimal	Supersy	m	net	ric St	andard	Ma	odel	(MSSM)	
Quark				Squark					
(spin 1/2)	$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	u_R	d_R	(spin 0)	$\left(\begin{array}{c} \widetilde{u} \\ \widetilde{d} \end{array} \right)_L$	\tilde{u}_R	\tilde{d}_R		
	$\left(\begin{array}{c} c\\ s \end{array} \right)_L$	C_R	S_R		$\left(\begin{array}{c} \widetilde{c} \\ \widetilde{s} \end{array} \right)_L$	\tilde{c}_R	\tilde{s}_R		
	$\left(\begin{array}{c} t\\ b \end{array} \right)_L$	t_R	b_R		$\left(\begin{array}{c} \widetilde{t} \\ \widetilde{b} \end{array} \right)_L$	\tilde{t}_R	\tilde{b}_R		
Leptons				Sleptons					
(spin 1/2)	$\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L$	e_R		(spin 0)	$\left(\begin{array}{c} \widetilde{v}_e \\ \widetilde{e} \end{array} \right)_L$	\tilde{e}_R			
	$\left(\begin{array}{c} u_{\mu} \\ \mu \end{array} ight)_{L}$	μ_R			$\left(egin{array}{c} \widetilde{ u}_{\mu} \\ \widetilde{\mu} \end{array} ight)_L$	$\tilde{\mu}_R$			
	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array} ight)_{L}$	$ au_R$			$\left(egin{array}{c} \widetilde{ u}_{ au} \\ \widetilde{ atural} \end{array} ight)_L$	$\tilde{\tau}_R$			
Gauge bosons				Gauginos					
(spin 1)	g			(spin 1/2)	\widetilde{g}				
	γ				$\widetilde{\gamma}$			Neutralinos	
	$V_{W^{\pm}}$				\widetilde{W}^{\pm}			$ \xrightarrow{\qquad} \chi^{\gamma}_{1,2,3,4} \\ \{ \widetilde{\gamma}, \widetilde{Z}, \widetilde{H}^0_{\mu}, \widetilde{H}^0_{J} \} $	
Higgs bosons				Higgsinos				Charginos	
(spin 0)	h^{0}, H^{0}, A^{0}			(spin 1/2)	$\widetilde{H}^{0}_{u},\widetilde{H}^{0}_{d}$			$\rightarrow \chi_{1,2}^{\pm}$	
	H^+, H^-				$\widetilde{H}_{u}^{+}, \widetilde{H}_{d}^{-}$			$\{\tilde{W}^{\pm}, \tilde{H}^{\pm}\}$	1

Minimal	Supersy	m	net	cric St	andard	Ma	odel	(//	NSSM)	
Quark				Squark						Partic
(spin 1/2)	$\left(\begin{array}{c} u\\ d\end{array}\right)_L$	u_R	d_R	(spin 0)	$\left(\begin{array}{c} \widetilde{u} \\ \widetilde{d} \end{array} \right)_L$	\tilde{u}_R	\tilde{d}_R			cles and Fi
	$\begin{pmatrix} c \\ s \end{pmatrix}_L$	C_R	S_R		$\left(\begin{array}{c} \widetilde{c}\\ \widetilde{s}\end{array}\right)_L$	\tilde{c}_R	\tilde{s}_R			undament
	$\left(\begin{array}{c} t\\ b \end{array} \right)_L$	t_R	b_R		$\left(\begin{array}{c} \widetilde{t} \\ \widetilde{b} \end{array} \right)_L$	\tilde{t}_R	\tilde{b}_R	\rightarrow	$\tilde{t}_{1,2},\tilde{b}_{1,2}$	al Interac
Leptons				Sleptons						tions,
(spin 1/2)	$\left(\begin{array}{c} v_e \\ e \end{array} \right)_L$	e_R		(spin 0)	$\left(\begin{array}{c} \widetilde{v}_e \\ \widetilde{e} \end{array} ight)_L$	\tilde{e}_R				Braibant
	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} ight)_{L}$	μ_R			$\left(egin{array}{c} \widetilde{ u}_{\mu} \\ \widetilde{\mu} \end{array} ight)_L$	$\tilde{\mu}_R$				et al
	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array} \right)_{L}$	$ au_R$			$\left(egin{array}{c} \widetilde{ u}_{ au} \ \widetilde{ au} \end{array} ight)_L$	$\tilde{\tau}_R$		\rightarrow	$\widetilde{ au}_{1,2}$	
Gauge bosons				Gauginos						
(spin 1)	g			(spin 1/2)	\widetilde{g}					
	γ				$\widetilde{\widetilde{\gamma}}$			Neu	tralinos	
	Z				\widetilde{Z}			\rightarrow	$\tilde{\chi}^{0}_{1,2,3,4}$	
	W^{\perp}			II: contract	W			$\{\gamma, \ldots, \gamma\}$	Z, H_u^0, H_d^0	
Higgs bosons	1.0 110 40			Higgsinos	$\tilde{\mathbf{u}}_0$ $\tilde{\mathbf{u}}_0$			Cna	rginos	
(spin 0)	$h^\circ, H^\circ, A^\circ$			(spin 1/2)	H_u°, H_d° $\widetilde{\mu} + \widetilde{\mu} -$			\rightarrow	$\chi_{1,2}$	1 /
	H', H				\boldsymbol{H}_{u} , \boldsymbol{H}_{d}			{ W	-, H -}	14

R-parity: a new quantum number

General supersymmetric lagrangian violates leptonic and baryonic numbers

Solution: new symmetry postulated

If R-parity is conserved:

- No B and L violation by construction
- SUSY particles created in pairs at colliders
- Lightest Supersymmetric Particle (LSP) stable
- LSP is a natural dark matter candidate if neutral and interacts weakly
 - \Rightarrow Missing transverse energy signature at LHC

SUSY diagrams

Because of the symmetry, SUSY diagrams are obtained from SM ones adding tilde on two of the particles. Examples:

SUSY diagrams

Because of the symmetry, SUSY diagrams are obtained from SM ones adding tilde on two of the particles. Examples:

Soft supersymmetry breaking

We don't know how SUSY is broken, but soft SUSY breaking effects can be parameterized in the Lagrangian without introducing new quadratic (Λ^2) divergences $\rightarrow 105$ free parameters but they are constraints by the experiments since they could induce flavour changing neutral currents (FCNC) or CP violation at an unacceptable level

$$L_{soft} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right)$$

Soft supersymmetry breaking

$$L_{soft} = -rac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + ext{c.c.}
ight)$$

$$-\widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \widetilde{L} - \widetilde{u} \mathbf{m}_{\overline{u}}^{2} \widetilde{u}^{\dagger} - \widetilde{d} \mathbf{m}_{\overline{d}}^{2} \widetilde{d}^{\dagger} - \widetilde{e} \mathbf{m}_{\overline{e}}^{2} \widetilde{e}^{\dagger}$$
Left handed
$$\operatorname{Right} \operatorname{handed}$$

$$\operatorname{Right} \operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right} \operatorname{Right}$$

$$\operatorname{Right}$$

$$\operatorname{Ri$$

$$\begin{split} L_{soft} &= \\ &- \left(\widetilde{\overline{u}} \, \mathbf{a_u} \, \widetilde{Q} H_u - \widetilde{\overline{d}} \, \mathbf{a_d} \, \widetilde{Q} H_d - \widetilde{\overline{e}} \, \mathbf{a_e} \, \widetilde{L} H_d + \text{c.c.} \right) \end{split}$$

A-terms result in L-R sfermion mixing, proportional to fermion Yukawa Each of a_u , a_d , a_e is a complex 3 × 3 matrix in family space, with dimensions of [mass]

Trilinear couplings example:

$$\widetilde{t}_{L} = \widetilde{t}_{R}^{0*}$$

--0.

Soft supersymmetry breaking

 L_{soft} =

$$-m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}).$$

Contributions to the Higgs potential

Soft supersymmetry breaking

We don't know how SUSY is broken, but soft SUSY breaking effects can be parameterized in the Lagrangian without introducing new quadratic (Λ^2) divergences $\rightarrow 105$ free parameters but they are constraints by the experiments since they could induce flavour changing neutral currents (FCNC) or CP violation at an unacceptable level

$$\begin{split} L_{soft} &= -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) \\ &- \left(\widetilde{\overline{u}} \, \mathbf{a_u} \, \widetilde{Q} H_u - \widetilde{\overline{d}} \, \mathbf{a_d} \, \widetilde{Q} H_d - \widetilde{\overline{e}} \, \mathbf{a_e} \, \widetilde{L} H_d + \text{c.c.} \right) \\ &- \widetilde{Q}^{\dagger} \, \mathbf{m_Q^2} \, \widetilde{Q} - \widetilde{L}^{\dagger} \, \mathbf{m_L^2} \, \widetilde{L} - \widetilde{\overline{u}} \, \mathbf{m_u^2} \, \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \, \mathbf{m_d^2} \, \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \, \mathbf{m_e^2} \, \widetilde{\overline{e}}^{\dagger} \\ &- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}) \,. \end{split}$$

Soft SUSY breaking terms should be merely viewed as a parametrization of our ignorance and can be used as an effective lagrangian from which to derive phenomenology

Supersymmetric models

pMSSM

The MSSM has 105 new parameters

- 8 parameters in the gaugino/higgsino sector (3 real and 5 phases)
- 21 sfermion masses
- 36 real mixing angles to define the sfermion mass eigenstates,
- 40 CP-violating phases that can appear in sfermion interactions.

Reflect our ignorance on SUSY breaking

Most of these are new flavor violation parameters or CP violating phases

Phenomenologically more "viable" models can be defined by making some further assumptions :

- All the soft SUSY breaking parameters are real and therefore there is no new source of CP violation in addition to the one from the CKM matrix
- The matrices for the sfermion masses and for the trilinear couplings are all diagonal implying the absence of flavor changing neutral current (FCNC) at tree level
- The soft susy breaking masses and trilinear couplings of the first and second sfermion generations are the same at low energy to cope with some severe constrains such as for example from neutral kaon mixing

pMSSM

The pMSSM has 19 parameters instead of 105 for the MSSM

- 3 wino/bino/gluino mass: M_{1,2,3}
- 10 squark/slepton soft masses
- Ratio of Higgs vevs: tanβ
- Pseudo-scalar Higgs mass: m_A
- Higgsino mass parameter: μ
- 3 trilinear couplings for the 3rd gen : $A_{t,b,\tau}$

A comprehensive study of the 19-parameter pMSSM is computationally expensive

Can reduce the number of parameters to 10 by assuming

- a common squark mass parameter for the first two generations,
- a common squark mass parameter for the third generation
- a common slepton mass parameter
- a common third generation A parameter.

cMSSM (aka mSuGra)

Top-down approach

- Model of SUSY breaking inspired by gravity mediation
- Impose boundary conditions at high energy scale
- Predict phenomenology at the EWK scale (renormalisation group equation)

Simplified models

From all sparticles consider only 2 or 3, decouple all others, force a specific decay mode(s) (with fixed Branching Ratio)

Assumptions on the chirality and nature of particle involved

Not always realistic but nice tool for analysis optimisation and display results

A'

Fix one

of ∆m

SUSY production at the LHC

But remember

Search strategy

Search strategy designed to provide coverage for a broad class of SUSY models

	Long- Lived				
R-Pa	arity-Conser	ving	R-Parity		
Strong 1 ^{st,} 2 nd gen. squarks, gluinos	3 rd gen. stop, sbottom	Weak EWK- inos, sleptons	RPC prod. RPV decays	RPV prod. RPV decays	Various ranges of lifetime

Image credit: M. D'Onofrio

+Additional Higgs boson searches

Squarks and gluinos

Squarks and gluinos production

Squarks decays

If $m_{squark} > m_{gluino}$, then the squark decays to a gluino and a quark via strong interation otherwise weak interaction:

Squarks decays

If $m_{squark} > m_{gluino}$, then the squark decays to a gluino and a quark via strong interation otherwise weak interaction:

Squarks decays

If $m_{squark} > m_{gluino}$, then the squark decays to a gluino and a quark via strong interation otherwise weak interaction:

Note: Intermediate particles can be offshell, asymmetric decays also possible! 35

Gluino decays

The gluino only interacts via strong interaction, so the decay is to squark-quark. If $m_{squark} > m_{gluino}$ then the squark will be virtual and one will have a 3-body decay:

Gluino decays

The gluino only interacts via strong interaction, so the decay is to squark-quark. If $m_{squark} > m_{gluino}$ then the squark will be virtual and one will have a 3-body decay:

Gluino decays

The gluino only interacts via strong interaction, so the decay is to squark-quark. If $m_{squark} > m_{gluino}$ then the squark will be virtual and one will have a 3-body decay:

Stop

Thanks to the mixing, the lightest stop can be the lightest squarks

Lowest cross-section (no top in proton)

Large spectrum of possible stop decays:

A detailed example: OL analysis

arXiv:1405.7875

OL analysis

Missing transverse energy

Missing transverse energy (MET) can indicate the presence of neutrinos or other non-interacting particles (ex: lsp neutralino)

It is calculated as the negative of the vectorial sum of all of the objects reconstructed in the event:

$$\overrightarrow{MET} = -\sum_{objects} \vec{p}_T$$

Trigger

Signal swamped by SM background:

 Need a first selection online (trigger)

Jet+MET trigger

Fully efficient with respect the following offline cuts:

- Leading jet pt>130GeV
- MET>160GeV

Missing transverse energy

Events without lepton

Missing transverse energy

Calorimeter large scale coherent noise

Beam induced background

Missing transverse energy

Reject events with at least one Looser bad jet with pT>20GeV or with at least one Tight bad jet with pT>100GeV

No more unphysical tail!

Nikola Makovec

Background

- Veto events with electrons and muons with pT>10GeV
- Main background:
 - Z→vv+jets: irreducible background, dominant at low jet multiplicity
 - W+jets: mainly coming from
 W→τν decay
 - Top: mainly pair production with W→τν decay, dominant at high jet multiplicity
 - Diboson: small (<10%) estimated from MC
 - Multijets: negligible thanks to harsh cuts to reject it

Discriminating variables

1000 1500 2000 2500

500

0

Nikola Makovec

3000 3500 4000

meff (GeV)

Effective mass

 $M_{eff} = H_T + E_T^{miss}$

 $H_T = \sum_{jets \ pT > 40 GeV} p_T^{jets}$

		Channel													
Requirement		2j					4j						5j 6j		
	2jl	2jm	2jt	2j(W)		4j(W)	4jl-	4jl	4jm	4jt		6jl	6jm	6jt	6jt+
Targetted signal	$\widetilde{q}\widetilde{q}$			ĝĝ	$\tilde{q}\tilde{g}$	ilde q ilde q	ilde q ilde q $ ilde q ilde g$ $ ilde g ilde g$		$\tilde{q}\tilde{q}$		$\tilde{g}\tilde{g}$		NUHM		
	direct			one-step	direct	one-step	direct		one-	step	one-step		iteriiti		
$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) >$	0.4														
$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss})>$	-					0.2									
				$2 W \rightarrow j$		$W \rightarrow j +$									
W candidates		-			-	$W \rightarrow jj$					-				
				60 <m(w)<100 gev<="" td=""><td></td><td>60<m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100></td></m(w)<100>		60 <m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100>									
$E_{\rm T}^{\rm miss}/\sqrt{H_T}>$	8	15	15				10	10							
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$				0.25	0.3	0.35			0.4	0.25	0.2	0.2	0.2	0.25	0.15
$m_{\rm eff}({\rm incl.}) [{ m GeV}] >$	800	1200	1600	1800	2200	1100	700	1000	1300	2200	1200	900	1200	1500	1700

						Cha	nnel			
Requirement			2j		3ј	3ј				
	2jl	2jm	2jt	2j(W)		4j(W)	4jl-			
Targetted signal		q̃q		$\tilde{g}\tilde{g}$	$\tilde{q}\tilde{g}$	$\widetilde{q}\widetilde{q}$				
Targetted Signar		direct		one-step	direct	one-step				
$\Delta\phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) >$						0.	.4			
$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss})>$				-						
				$2 W \rightarrow j$		$W \rightarrow j +$				
W candidates		-			-	$W \rightarrow jj$				
				60 <m(w)<100 gev<="" td=""><td></td><td>60<m(w)<100 gev<="" td=""><td></td></m(w)<100></td></m(w)<100>		60 <m(w)<100 gev<="" td=""><td></td></m(w)<100>				
$E_{\rm T}^{\rm miss}/\sqrt{H_T}>$	8	15	15				10			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$				0.25	0.3	0.35				
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	800	1200	1600	1800	2200	1100	700			

 $M_{eff} = H_T + E_T^{miss}$

		Channel													
Requirement		2j					4j					5j 6j			
	2jl	2jm	2jt	2j(W)		4j(W)	4jl-	4jl	4jm	4jt	3	6jl	6jm	6jt	6jt+
Targetted signal	$\tilde{q}\tilde{q}$ $\tilde{g}\tilde{g}$ direct one-step			<i>q̃ĝ</i> direct	<i>q̃q̃</i> one-step	$\tilde{q}\tilde{q}$ $\tilde{q}\tilde{g}$ & $\tilde{g}\tilde{g}$ direct			& ĝĝ	q̃q one-step		$\tilde{g}\tilde{g}$		NUHM	
A (() Timiss)															
$\Delta \phi(J_{1,2,(3)}, E_{T}^{mos}) >$	0.4														
$\Delta \phi(j_{i>3}, E_{\mathrm{T}}^{\mathrm{miss}}) >$				-		0.2									
				$2 W \rightarrow j$		$W \rightarrow j +$									
W candidates		-			-	$W \rightarrow jj$					-				
				60 <m(w)<100 gev<="" td=""><td></td><td>60<m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100></td></m(w)<100>		60 <m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100>									
$E_{\rm T}^{\rm miss} / \sqrt{H_T} >$	8	15	15				10	10							
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$				0.25	0.3	0.35			0.4	0.25	0.2	0.2	0.2	0.25	0.15
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	800	1200	1600	1800	2200	1100	700	1000	1300	2200	1200	900	1200	1500	1700

 $M_{eff} = H_T + E_T^{miss}$

 $H_T = \sum_{jets \ pT > 40 GeV} p_T^{jets}$

		Channel													
Requirement		2j					4j						5j 6j		
	2jl	2jm	2jt	2j(W)		4j(W)	4jl-	4jl	4jm	4jt		6jl	6jm	6jt	6jt+
Targetted signal	ilde q ilde q			ĝĝ	$\tilde{q}\tilde{g}$	ilde q ilde q	ilde q ilde q $ ilde q ilde g$ $ ilde g ilde g$		$\tilde{q}\tilde{q}$		$\tilde{g}\tilde{g}$		NUHM		
	direct			one-step	direct	one-step	direct		one-	step	one-step		iteriti		
$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) >$	$\phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4$														
$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss})>$				-		0.2									
				$2 W \rightarrow j$		$W \rightarrow j +$									
W candidates		-			-	$W \rightarrow jj$					-				
				60 <m(w)<100 gev<="" td=""><td></td><td>60<m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100></td></m(w)<100>		60 <m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100>									
$E_{\rm T}^{\rm miss}/\sqrt{H_T} >$	8	15	15				10	10							
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$				0.25	0.3	0.35			0.4	0.25	0.2	0.2	0.2	0.25	0.15
$m_{\rm eff}({\rm incl.}) [{ m GeV}] >$	800	1200	1600	1800	2200	1100	700	1000	1300	2200	1200	900	1200	1500	1700

		Channel													
Requirement		2j			3ј		4j				5j		6ј		
	2jl	2jm	2jt	2j(W)		4j(W)	4jl-	4jl	4jm	4jt		6jl	6jm	6jt	6jt+
Targetted signal	$\tilde{q}\tilde{q}$			- ĨĴ	$\tilde{q}\tilde{g}$	$\tilde{q}\tilde{q}$	ilde q ilde q $ ilde q ilde g$ $ ilde g ilde g$		$\tilde{q}\tilde{q}$		$\tilde{g}\tilde{g}$		NUHM		
	direct			one-step	direct	one-step	direct			one-step		one-step			
$\Delta\phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) >$						0	t.								
$\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss}) >$				-					0.2						
				$2 W \rightarrow j$		$W \rightarrow j +$									
W candidates		-			-	$W \rightarrow jj$					-				
				60 <m(w)<100 gev<="" td=""><td></td><td>60<m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100></td></m(w)<100>		60 <m(w)<100 gev<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m(w)<100>									
$E_{\rm T}^{\rm miss}/\sqrt{H_T}>$	8	15	15				10	10							
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$				0.25	0.3	0.35			0.4	0.25	0.2	0.2	0.2	0.25	0.15
$m_{\rm eff}({\rm incl.}) [{ m GeV}] >$	800	1200	1600	1800	2200	1100	700	1000	1300	2200	1200	900	1200	1500	1700

,

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC}$$

- Renormalize the MC to data in dedicated control regions
- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR

$$meff' = met' + H_T = \left| \overrightarrow{met} + \overrightarrow{p_T^{Zll}} \right| + H_T$$

- Renormalize the MC to data in dedicated control regions
- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR
- Systematic uncertainties which are correlated between CR and SR largely cancel out in the transfer factor
- Zll are statistically limited

$$meff' = met' + H_T = \left| \overrightarrow{met} + \overrightarrow{p_T^{Zll}} \right| + H_T$$

Likelihoods

The background can also be constrained by the data using a control region where the number of events is noted m

$$L(n,m \mid \mu,b) = \frac{(\mu s + b)^{n} e^{-(\mu s + b)}}{n!} \cdot \frac{(\tau b)^{m} e^{-\tau b}}{m!} \qquad b_{CR} = \tau b = \frac{b}{TF}$$

 $\hat{b} = TF.m_{meas.}$

Here b is treated as a nuisance parameter.

If $b_{CR} = \tau b \neq m_{meas}$, need to adjust b to maximize the likelihood. In general, there should also be also an uncertainty on τ One can also introduce equivalently the background strengh parameter ($\mu_b b$)

$$L(n,m \mid \mu,\mu_b) = \frac{(\mu . s + \mu_b . b)^n e^{-(\mu . s + \mu_b . b)}}{n!} \cdot \frac{(\mu_b . b_{CR})^m e^{-\mu_b . b_{CR}}}{m!} \qquad \hat{\mu}_b = \frac{m_{meas.}}{b_{CR}}$$

There should also be also an uncertainty on b and b_{CR} which should be highly correlated.

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{Zll}^{data}}{N_{Zll}^{MC}}$$

Renormalize the MC to data in dedicated control regions

- Control regions are orthogonal to the SR (by inverting cuts) but have kinematical cuts close to SR
- Systematic uncertainties which are correlated between CR and SR largely cancel out in the transfer factor
- Zll are statistically limited

$$N_{Z\nu\nu}^{pred} = N_{Z\nu\nu}^{MC} \times \frac{N_{\gamma+jets}^{data}}{N_{\gamma+jets}^{MC}}$$

- The process γ +jets has much larger statistics
- But massless boson and different couplings
- Transfer factors theoretically understood at the 5-10% level

0.

500

1000

1500

2000

4000

3500

m_{eff}(incl.) [GeV]

2500

3000

photon control region

Fitting strategy

A global likelihood fit for the normalization of each background from the 4 control regions is simultaneously performed separately for each signal region.

 Background cross contamination in control regions automatically taken into account

$$L(\boldsymbol{n},\boldsymbol{\theta}^{0}|\boldsymbol{\mu},\boldsymbol{s},\boldsymbol{b},\boldsymbol{\theta}) = P(n_{s}|\lambda_{s}(\boldsymbol{\mu},\boldsymbol{s},\boldsymbol{b},\boldsymbol{\theta}))) \times \prod_{r \in CRs} P(n_{r}|\lambda_{r}(\boldsymbol{\mu},\boldsymbol{s},\boldsymbol{b},\boldsymbol{\theta})) \times \prod_{j \in SUs} G(\theta_{j}^{0},\theta_{j})$$

avec
$$\lambda_i(\boldsymbol{\mu}, s_i, \mathbf{b_i}, \boldsymbol{\theta}) = s_i(\boldsymbol{\theta}) \cdot \mu_s + \sum_{j \in bkg} b_{i,j}(\boldsymbol{\theta}) \cdot \mu_j$$

Systematics:

- Cancellation of the main systematics thanks to semi data driven technique
- JES, JER: 1 to 12%
- Theory: 5 to 20%
- Statistics in CR: 1 to 30%

MC background prediction

Fitted background prediction

Validation regions

Validation regions

Several validation regions were designed to validate the background prediction

Pull:

$$\frac{n_{obs} - n_{pred}}{\sigma}$$

Good agreement between data and the prediction!

	ATLA	S			ſ		0				
2jl	0.2	-0.7	-0.7	-0.5	0.1	0.4	-0.2	0.2	0.2		3
2jm	-0.1	-1.1	0.5	-0.0	-0.6	-1.0	0.8	-0.6	0.9		
2jt	0.3	0.1	0.5	-0.2	1.4	-0.5	1.2	-0.5	0.7		2
2jW	-0.6	-1.0	-0.2	-0.5	-0.4	1.9	-0.6	0.3	-0.0		
Зј	-0.2	-1.0	-0.4	-0.7	-0.9	-0.1	-0.6	-0.0	-0.1		4
4jl-	-0.2	0.3	0.0	-1.4	0.9	0.3	1.2	0.1	-0.1		
4jl	-0.3	0.6	0.1	-0.6	0.6	0.8	1.0	0.1	-0.1		
4jm	0.6	-0.8	0.1	0.2	0.8	-0.1	1.1	0.3	-0.0	_	0
4jt	-0.6	-0.6	-0.1	-0.7	-0.6	0.1	-0.8	-0.8	-0.1		
4jW	1.6	-1.5	-0.2	-0.3	-1.3	-0.9	-0.1	0.2	0.5		-1
5j	2.4	0.5	1.4	-1.0	0.1	-0.1	0.5	-0.2	0.2		- 1
6jl	-0.1	-0.2	-0.2	-0.8	0.7	0.1	0.2	-0.1	-0.2		
6jm	0.4	0.6	0.1	-0.7	0.1	0.7	0.8	-0.1	-0.2		-2
6jt	-0.9	1.5	0.4	0.2	-0.5	0.4	1.2	-0.1	0.0		
6jt+	-0.8	0.5	0.5	0.4	-1.4	-0.5	-1.0	0.2	0.1		3
	VRZ	VRW	VRWv	VRWτ	VRT	VRTv	$VRT\tau$	VRQa	VRQb		-0
		(γ)	(γ		()			
	Ζ		W			Тор)	Mul			

Fitted background prediction

Results

Limits

Interpretation

Interpretation

Interpretation

mSugra

Nikola Makovec

Additional Higgs bosons

Why 2 Higgs doublets?

 $\sum_{SM fermions} Y_f^3 = 0$

anomaly cancellation Miracle of the standard model

Now in SUSY we got at least one new fermion, the Higgsino

Need a Higgsino with Y=-1/2 to avoid anomalies

This new anomaly cancels if and only if both the $ilde{H}_{\!_{u}}$ and $ilde{H}_{\!_{d}}$ Higgsinos exist.

The masses of the up-quarks (u,c,t) arise from coupling with H_{μ}

The masses of the down-quarks (d,s,b) arise from coupling with H_d

2 Higgs doublets needed!

MSSM Higgs sector

Higgs sector in SUSY contains two scalar doublets \Rightarrow 5 Higgs

- neutral, CP-even: h, H
- neutral, CP-odd: A $v^2 = v_u^2 + v_d^2$ $\tan \beta = \frac{v_u}{v_d}$ charged H⁺, H⁻

At tree level two free parameters: m_{A} and $tan\beta$

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$m_{H,h}^{2} = \frac{1}{2} \left(m_{A}^{2} + m_{Z}^{2} \pm \sqrt{\left(m_{A}^{2} + m_{Z}^{2}\right)^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}2\beta} \right)$$

$$\tan \alpha = \frac{-\left(m_{A}^{2} + m_{Z}^{2}\right)\sin 2\beta}{\left(m_{Z}^{2} - m_{A}^{2}\right)\cos 2\beta + \sqrt{\left(m_{A}^{2} + m_{Z}^{2}\right)^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}2\beta}}$$

$$H^{0} = \operatorname{Re}(H_{d}^{2}) \cos \alpha + \operatorname{Re}(H_{u}^{1}) \sin \alpha,$$

$$h^{0} = -\operatorname{Re}(H_{d}^{2}) \sin \alpha + \operatorname{Re}(H_{u}^{1}) \cos \alpha,$$

$$A^{0} = \operatorname{Im}(H_{d}^{2}) \sin \beta + \operatorname{Im}(H_{u}^{1}) \cos \beta,$$

81

Decoupling limit $(m_A >> m_z)$

$$\begin{split} m_h^2 &\simeq m_Z^2 \cos^2 2\beta \,, \\ m_H^2 &\simeq m_A^2 + m_Z^2 \sin^2 2\beta \,, \\ m_{H^\pm}^2 &= m_A^2 + m_W^2 \,, \\ \cos^2(\beta - \alpha) &\simeq \frac{m_Z^4 \sin^2 4\beta}{4m_A^4} <<1 \qquad (\text{alignment limit}) \end{split}$$

Neutral Higgs production modes

Two main production modes:

• $gg \rightarrow \phi$ $\phi = (h/H/A)$

• $bb\phi$ (enhanced at large tan β)

Neutral Higgs decay modes

Neutral Higgs ϕ =H,A decay modes at m(A/H) > 350 GeV :

- BR(φ→bbar)
- BR(φ→ττ)
- BR($\phi \rightarrow tt$) (enhanced at low tan β)

τ lepton

Hadronic τ : narrow jet with one or three tracks

Signature: 2 isolated high leptons (e, μ , $\!\tau_h$)

• e μ , e τ_h , $\mu \tau_h$, $\tau_h \tau_h$

Background:

- Dominated by τ mis-identification: Multijets, W+jets,...
- Z-> $\tau\tau$ is not so large in the high mass region

16 categories for sensitivity optimization

Signal extraction based on:

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(p_{\rm T}^{\tau_1}, p_{\rm T}^{\tau_2}) + m_{\rm T}^2(p_{\rm T}^{\tau_1}, p_{\rm T}^{\rm miss}) + m_{\rm T}^2(p_{\rm T}^{\tau_2}, p_{\rm T}^{\rm miss})}$$
$$m_{\rm T} = \sqrt{2 \, p_{\rm T} \, p_{\rm T}' \, [1 - \cos(\Delta \phi)]}.$$

					g 🔿	0000		^b Large	e tanβ
	g $\overline{t, b, \tilde{t}, \tilde{b}}$ $ h, H, A$				g cocco b				
	No b-tag				b-tag				
${\rm H} \rightarrow \tau \tau \rightarrow {\rm e} \mu$	Low- D_{ζ}	Mediu	$\operatorname{um-}D_{\zeta}$	$\operatorname{High-}D_{\zeta}$	Low- D_{ζ}	Medi	um- D_{ζ}	$\operatorname{High-}D_{\zeta}$	
$H\to\tau\tau\to e\tau_h$	Loose- $m_{\rm T}$		Tight- $m_{\rm T}$		Loose- $m_{\rm T}$ T		Tight	light- $m_{ m T}$	
$H \to \tau \tau \to \mu \tau_h$	Loose- $m_{\rm T}$		Tight- $m_{\rm T}$		Loose- $m_{\rm T}$		Tight - m_T		
$H \to \tau \tau \to \tau_h \tau_h$									

					g へ	00000		^b Large	$tan\beta$
	g $\overline{t, b, \tilde{t}, \tilde{b}}$ h, H, A g \overline{c}				g ососо <u>b</u>				
	No b-tag				b-tag				_
$\mathbf{H} \to \tau \tau \to \mathbf{e} \mu$	Low- D_{ζ}	Mediv	$\operatorname{um-}D_{\zeta}$	High- D_{ζ}	Low- D_{ζ}	Mediu	$\operatorname{um-}D_{\zeta}$	High- D_{ζ}	
$H\to\tau\tau\to e\tau_h$	Loose- $m_{\rm T}$		Tight-	$-m_{\mathrm{T}}$	Loose- $m_{\rm T}$		Tight	$-m_{\mathrm{T}}$]
$H \to \tau \tau \to \mu \tau_h$	Loose- $m_{\rm T}$		Tight-	- <i>m</i> _T	Loose- $m_{\rm T}$		Tight	$-m_{\mathrm{T}}$	
$H \to \tau \tau \to \tau_h \tau_h$									
$Z \to \mu \mu$									
$t\overline{t}(e\mu)$									
		Sig	nal re	egion (SR)					
		Cor	ntrol	region					

- Model-independent exclusion limits for $gg \rightarrow \phi$ and $gg \rightarrow bb\phi$:
 - All categories and final states combined together
 - Limits cover a large range of m_{ϕ}
 - No significant excess with respect to background expectations

Summary

Exercise

Assuming R-parity with the photino as the LSP and all other sparticles decoupled:

- Draw Feynman diagrams for squarks and gluinos production at the LHC
- Draw Feynman diagrams for squarks and gluinos decays

Exercise

Assuming R-parity conservation, show that

- 1. SUSY particles must be produced in pairs
- 2. One SUSY particle (except the LSP) must always contains exactly one SUSY particle in its Decay products
- 3. The LSP is stable

1) $SM + SM \rightarrow SUSY + SUSY$ $R = (+1) \times (+1) = (-1) \times (-1)$

2) $SUSY \rightarrow SUSY + SM + SM + ...$ $R = (-1) = (-1) \times (+1) \times (+1)$ 3)

 $LSP \nleftrightarrow SUSY + SM + SM + ...$ $R = (-1) = (-1) \times (+1) \times (+1)$ not possible because no lighter SUSY particle $LSP \bigstar SM + SM + ...$ $R = (-1) \neq (+1) \times (+1)$ not possible because R-parity
must be conserved

Background process	Misidentification	eμ	$e\tau_h$	$\mu \tau_{ m h}$	$\tau_{\rm h} \tau_{\rm h}$
$H \to \tau \tau$ (SM)		MC	MC	MC	MC
$Z \rightarrow \tau \tau$		MC^{\dagger}	MC^{\dagger}	MC ⁺	MC^{\dagger}
$Z \to \ell \ell$	$\ell \rightarrow \tau_{\rm h}$ Jet $\rightarrow \tau_{\rm h}$	MC	MC F _F	MC F _F	MC F _F
Diboson+single t	$\begin{array}{c} \tau/\ell \to \tau_{\rm h} \\ {\rm Jet} \to \tau_{\rm h} \end{array}$	MC	MC F _F	MC F _F	MC F _F
tī	$\begin{array}{c} \tau/\ell \to \tau_{\rm h} \\ {\rm Jet} \to \tau_{\rm h} \end{array}$	MC [†]	$\frac{MC^{+}}{F_{F}}$	$\frac{MC^+}{F_F}$	MC^+ F_F
W+jets	Jet $\rightarrow \tau_h$	MC	$F_{\rm F}$	F_{F}	F_{F}
QCD multijet production	Jet $\rightarrow \tau_h$	CR	$F_{\rm F}$	$F_{\rm F}$	$F_{\rm F}$

⁺ Normalization from control region in data.

Supersymmetry breaking

The existence of soft susy breaking terms have been justified in the context of spontaneously broken local supersymmetry i.e. spontaneouly broken supergravity

The spontaneous breaking occurs in a so called 'hidden sector' at high energy scale and is transmitted to a so called 'visible sector' at lower energy scale (SM particles and susy partners) via some interactions (messengers) :

- gravitational interactions \Rightarrow e.g. **MSUGRA**, **AMSB**
- new gauge interactions ⇒ e.g. Gauge Mediated SUSY Breaking i.e. GMSB

Squarks and sleptons masses

- Obtaining physical masses implies diagonalization of the mass matrices coming from the original Lagrangian
- To treat the sfermions in complete generality we would have to consider arbitrary mixing and diagonalize
 - **1.** a 6×6 mass matrix for the up-type squarks $(\tilde{t}_L, \tilde{t}_R, \tilde{c}_L, \tilde{c}_R, \tilde{u}_L, \tilde{u}_R)$
 - **2**. a 6×6 mass matrix for the down-type squarks $(\tilde{b}_L, \tilde{b}_R, \tilde{s}_L, \tilde{s}_R, \tilde{d}_L, \tilde{d}_R)$
 - **3**. a 6×6 mass matrix for the charged sleptons $(\tilde{\tau}_L, \tilde{\tau}_R, \tilde{\mu}_L, \tilde{\mu}_R, \tilde{e}_L, \tilde{e}_R)$
 - 4. a 3×3 mass matrix for sneutrinos $(\tilde{\nu}_{\tau}, \ \tilde{\nu}_{\mu}, \ \tilde{\nu}_{e})$

Fortunately most of mixing angles are small in viable models and the Yukawa couplings for the first and second generations are negligible. We end up with 7 unmixed pairs

 $(\tilde{c}_L, \tilde{c}_R)$, $(\tilde{u}_L, \tilde{u}_R)$, $(\tilde{s}_L, \tilde{s}_R)$, $(\tilde{d}_L, \tilde{d}_R)$, $(\tilde{\mu}_L, \tilde{\mu}_R)$, $(\tilde{e}_L, \tilde{e}_R)$, $(\tilde{\nu}_{\mu}, \tilde{\nu}_{e})$

and 3 mixing pairs (due to sizable Yukawa coupling)

 $(ilde{t}_L, ilde{t}_R)$, $(ilde{b}_L, ilde{b}_R)$, $(ilde{ au}_L, ilde{ au}_R)$

Squark masses

Obtaining physical masses implies diagonalization of the mass matrices coming from the original Lagrangian

Fortunately most of mixing angles are small in viable models and the Yukawa couplings for the first and second generations are negligible

For the stop:

$$\mathcal{L}_{stop-mass} = -\begin{pmatrix} t_L^* & t_R^* \end{pmatrix} \begin{pmatrix} m_{\tilde{Q}_3}^2 + m_t^2 + \Delta_{\tilde{u}_L} & \frac{\nu}{\sqrt{2}} \sin\beta \left(a_t - y_t \mu \cot\beta \right) \\ \frac{\nu}{\sqrt{2}} \sin\beta \left(a_t - y_t \mu \cot\beta \right) & m_{\tilde{t}_R}^2 + m_t^2 + \Delta_{\tilde{u}_R} \end{pmatrix} \begin{pmatrix} t_L \\ t_R \end{pmatrix}$$

where $\Delta_{\tilde{u}_{L,R}}$ is an $SU(2)_L \times U(1)_y$ D-term ($\Delta_{\Phi_{L,R}} = M_Z^2 (T_{3\Phi_{L,R}} - Q_{\Phi_{L,R}} \sin^2 \theta_W) \cos 2\beta$)

$$m_{\tilde{t}_{1}, \tilde{t}_{2}}^{2} = \frac{1}{2} \left[\left(m_{\tilde{Q}_{3}}^{2} + m_{\tilde{t}_{R}}^{2} + 2m_{t}^{2} + \Delta_{u_{L}} + \Delta_{u_{R}} \right) \right]$$

$$\mp \sqrt{\left(m_{\tilde{Q}_{3}}^{2} - m_{\tilde{t}_{R}}^{2} + \Delta_{u_{L}} - \Delta_{u_{R}} \right)^{2} + 2v^{2} \sin^{2} \beta \left(a_{t} - y_{t} \mu \cot \beta \right)^{2}} \right]$$

Weak SUSY

Minimal Supersymmetric Standard Model (MSSM)

Field Content of the MSSM								
Super-	Super-	Bosonic	Fermionic					
multiplets	field	fields	partners	${ m SU}(3)$	SU(2)	U(1)		
gluon/gluino	\widehat{V}_8	g	\widetilde{g}	8	1	0		
gauge boson/	\widehat{V}	W^{\pm},W^0	$\widetilde{W}^{\pm},\widetilde{W}^{0}$	1	3	0		
gaugino	\widehat{V}'	В	\widetilde{B}	1	1	0		
slepton/	\widehat{L}	$(\widetilde{\nu}_L, \widetilde{e}_L^-)$	$(\nu, e^-)_L$	1	2	-1		
lepton	\widehat{E}^{c}	\tilde{e}_R^+	e_L^c	1	1	2		
$\operatorname{squark}/$	\widehat{Q}	$(\widetilde{u}_L, \widetilde{d}_L)$	$(u,d)_L$	3	2	1/3		
quark	\widehat{U}^{c}	\widetilde{u}_R^*	u_L^c	$\bar{3}$	1	-4/3		
	\widehat{D}^{c}	\widetilde{d}_R^*	d_L^c	$\bar{3}$	1	2/3		
Higgs/	\widehat{H}_d	(H_d^0, H_d^-)	$(\widetilde{H}_d^0, \widetilde{H}_d^-)$	1	2	-1		
higgsino	\widehat{H}_{u}	(H_u^+, H_u^0)	$(\widetilde{H}_u^+, \widetilde{H}_u^0)$	1	2	1		

Higgs sector extended to 5 Higgs bosons: h, H, A, H^{\pm}

. .

$$\tilde{H}^{0}_{u} \tilde{H}^{0}_{d} \tilde{W}^{0} \tilde{B}^{0} \longrightarrow \tilde{\chi}^{0}_{1} \tilde{\chi}^{0}_{2} \tilde{\chi}^{0}_{3} \tilde{\chi}^{0}_{4}$$

$$\tilde{H}^{+}_{u} \tilde{H}^{-}_{d} \tilde{W}^{+} \tilde{W}^{-} \xrightarrow{\mathrm{EW}} \tilde{\chi}^{\pm}_{1} \tilde{\chi}^{\pm}_{2}$$
symmetry

breaking

Nikola Makovec

Charginos and neutralinos masses

(i) Neutral components \rightarrow Neutralinos

$$\mathcal{L}_{neutral} = -\frac{1}{2} \begin{pmatrix} \tilde{B} & \tilde{W}^0 & \tilde{H}_d^0 & \tilde{H}_u^0 \end{pmatrix} \underbrace{\begin{pmatrix} M_1 & 0 & -g'v_d/2 & g'v_u/2 \\ 0 & M_2 & gv_d/2 & -gv_u/2 \\ -g'v_d/2 & gv_d/2 & 0 & -\mu \\ g'v_u/2 & -gv_u/2 & -\mu & 0 \end{pmatrix}}_{M_{\chi}} \begin{pmatrix} \tilde{B} \\ \tilde{W}^0 \\ \tilde{H}_d^0 \\ \tilde{H}_u^0 \end{pmatrix} + h.c. ,$$

Mass eigenstates, the neutralinos, obtained after diagonalization

$$diag\left(m_{\tilde{\chi}^0_1}\ ,\ m_{\tilde{\chi}^0_2}\ ,\ m_{\tilde{\chi}^0_3}\ ,\ m_{\tilde{\chi}^0_4}
ight)$$
 ,

(ii) Charged components \rightarrow Charginos

$$\mathcal{L}_{charged} = -\frac{1}{2} \left[\begin{pmatrix} \tilde{W}^+ & \tilde{H}_u^+ \end{pmatrix} \mathbf{C}^{\mathbf{T}} \begin{pmatrix} \tilde{W}^- \\ \tilde{H}_d^- \end{pmatrix} + \begin{pmatrix} \tilde{W}^- & \tilde{H}_d^- \end{pmatrix} \mathbf{C} \begin{pmatrix} \tilde{W}^+ \\ \tilde{H}_u^+ \end{pmatrix} \right] + h.c.$$
(55)

with the mass matrix of the charged components given by

$$\mathbf{C} = \begin{pmatrix} M_2 & gv_u/2\\ gv_d/2 & \mu \end{pmatrix}.$$
 (56)

where the eigenstates are the charginos χ_1^{\pm} and χ_2^{\pm} .

Charginos and neutralinos masses

Long-lived particles

Very challenging (low MET and soft decay products)

Electroweak production

Rare processes at the LHC: only quarks in the initial state At least two vertices involving the electromagnetic or weak coupling 105

Cross-section

Decays

Bino case Open Spectra

Signature depend on H decay.

Multilepton search

• To face the small cross-section the analysis is subdivided into **several categories**:

• 2 same-sign $\ell_{(e,\mu)} / 3\ell_{(e,\mu)} / 3\ell$ with 1 or 2 $\tau_h / > 3\ell$ with at max 2 τ_h

- Signal regions: bins in kinematic variables $(E_T^{miss}, M_T(\ell, E_T^{miss})^*, p_T(\ell\ell), M_{T_2}(\ell, \ell)^{**})$
 - discriminate from SM bkg and increase sensitivity to different sparticle mass hierarchies
- It uses single/double lepton triggers (offline p_T > 25/20 15/10 GeV)
 - doesn't cover the quasi-degenerate region of phase space, but it goes down to $E_T^{miss} \ 50 \ GeV$
- Events with at least one b-tag jet are rejected
- Main residual backgrounds:

Multilepton search

Results for three light leptons (OSSF pair)

Multilepton search: light sleptons

Multilepton search: heavy sleptons

pMSSM interpretation

Simplified vs realistic models

Most searches interpret results in terms of simplified models These consider a single production and decay process

Not representative of more complex SUSY phenomenology

pMSSM

Assumptions:

- 1st gen. sfermion degenerate with corresponding 2nd gen. sfermion
- No CP violation beyond CKM
- No FCNC
- Lightest neutralino as LSP

The pMSSM has 19 parameters instead of 105 for the MSSM

- 3 wino/bino/gluino mass: M_{1,2,3}
- 10 squark/slepton soft masses
- Ratio of Higgs vevs: tanβ
- Pseudo-scalar Higgs mass: m_A
- Higgsino mass parameter: μ
- 3 trilinear couplings for the 3rd gen : $A_{t,b,\tau}$

Strategy

- 1. Scan pMSSM space
 - A cartesian grid in 19-D is not possible (4¹⁹=300 billion) so we need to sample the parameter space randomly
 - Sampled from uniform distributions in the 19 parameters with ranges chosen w.r.t existing exclusions and LHC reach
- 2. Find points that are not excluded by other constraints dq
 - 300 000/500 millions
- 3. Generate samples and obtain new exclusion limits for each analysis using full simulation when needed
- 4. Determine overall status of points based on all analysis results

Analysis

0 -lepton + 2–6 jets + $E_{\rm T}^{\rm m}$	iss [1405.7875]
0-lepton + 7–10 jets + E	miss [1308.1841]
1-lepton + jets + $E_{\rm T}^{\rm miss}$	[1501.03555]
$\tau(\tau/\ell)$ + jets + $E_{\rm T}^{\rm miss}$	[1407.0603]
SS/3-leptons + jets + E_T^m	iss [1404.2500]
$0/1$ -lepton + 3b-jets + E_1^r	niss [1407.0600]
Monojet	[1502.01518]
0-lepton stop	[1406.1122]
1-lepton stop	[1407.0583]
2-leptons stop	[1403.4853]
Monojet stop	[1407.0608]
Stop with Z boson	[1403.5222]
$2b$ -jets + $E_{\rm T}^{\rm miss}$	[1308.2631]
$tb+E_{\rm T}^{\rm miss}$, stop	[1506.08616]
- lh	[1501.07110]
2-leptons	[1403.5294]
2-τ	[1407.0350]
3-leptons	[1402.7029]
4-leptons	[1405.5086]
Disappearing Track	[1310.3675]
Long-lived particle	211.1597] [1411.6795]
$H/A ightarrow au^+ au^-$	[1409.6064]

Parameters

Parameter	Min value	Max value	Note		
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	90 GeV	4 TeV	Left-handed slepton (first two gens.) mass		
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	90 GeV	4 TeV	Right-handed slepton (first two gens.) mass		
$m_{\tilde{L}_3}$	90 GeV	4 TeV	Left-handed stau doublet mass		
$m_{\tilde{e}_3}$	90 GeV	4 TeV	Right-handed stau mass		
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	200 GeV	4 TeV	Left-handed squark (first two gens.) mass		
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	200 GeV	4 TeV	Right-handed up-type squark (first two gens.) mass		
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	200 GeV	4 TeV	Right-handed down-type squark (first two gens.) mass		
$m_{\tilde{Q}_3}$	100 GeV	4 TeV	Left-handed squark (third gen.) mass		
$m_{\tilde{u}_3}$	100 GeV	4 TeV	Right-handed top squark mass		
$m_{\tilde{d}_3}$	100 GeV	4 TeV	Right-handed bottom squark mass		
$ M_1 $	0 GeV	4 TeV	Bino mass parameter		
$ M_2 $	70 GeV	4 TeV	Wino mass parameter		
$ \mu $	80 GeV	4 TeV	Bilinear Higgs mass parameter		
M_3	200 GeV	4 TeV	Gluino mass parameter		
$ A_t $	0 GeV	8 TeV	Trilinear top coupling		
$ A_b $	0 GeV	4 TeV	Trilinear bottom coupling		
$ A_{\tau} $	0 GeV	4 TeV	Trilinear τ lepton coupling		
M_A	100 GeV	4 TeV	Pseudoscalar Higgs boson mass		
$\tan\beta$	1	60	Ratio of the Higgs vacuum expectation values		

Constraints

Parameter	Minimum value Maximum value	
Δρ	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \rightarrow s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$BR(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
$\mathrm{BR}(B^+ \to \tau^+ \nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$	—	0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$	_	2 MeV
Masses of charged sparticles	100 GeV	_
$m(\tilde{\chi}_1^{\pm})$	103 GeV	_
$m(\tilde{u}_{1,2}, \tilde{d}_{1,2}, \tilde{c}_{1,2}, \tilde{s}_{1,2})$	200 GeV	—
m(h)	124 GeV	128 GeV

Gluinos

Present results as fraction of excluded models as a function of various parameters, such as sparticle masses

Black means 100% excluded – white is no models generated

Squarks

For light-flavor squarks, only $m(\tilde{q})$ <250 GeV fully excluded

Electroweakinos

Electroweakino exclusion complicated due to strong dependence on the nature of LSP (Bino, Wino and Higgsino admixture)

_	Analysis	All LSPs	Bino-like	Wino-like	Higgsino-like
Can also compare strength of different analysis for these pMSSM models	0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5%
	0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%
	$0/1$ -lepton + $3b$ -jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1%
	1 -lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%
	Monojet	9.9%	16.7%	9.1%	10.1%
	$SS/3$ -leptons + jets + E_T^{miss}	2.4%	1.6%	2.4%	2.5%
Absolute fractions very dependent on	$\tau(\tau/\ell) + \text{jets} + E_{\text{T}}^{\text{miss}}$	3.0%	1.3%	2.9%	3.1%
	0-lepton stop	9.4%	7.8%	8.2%	10.2%
	1-lepton stop	6.2%	2.9%	5.4%	6.8%
pivissivi scan range,	$2b$ -jets + $E_{\rm T}^{\rm miss}$	3.1%	3.3%	2.3%	3.6%
but gives idea of relative sensitivity	2-leptons stop	0.8%	1.1%	0.8%	0.7%
	Monojet stop	3.5%	11.3%	2.8%	3.6%
	Stop with Z boson	0.4%	1.0%	0.4%	0.5%
Split by LSP type	$tb + E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%
	ℓh , electroweak	0	0	0	0
(dominant χ_1°	2-leptons, electroweak	1.3%	2.2%	0.7%	1.6%
component)	2- τ , electroweak	0.2%	0.3%	0.2%	0.2%
, ,	3-leptons, electroweak	0.8%	3.8%	1.1%	0.6%
	4-leptons	0.5%	1.1%	0.6%	0.5%
	Disappearing Track	11.4%	0.4%	29.9%	0.1%
	Long-lived particle	0.1%	0.1%	0.0%	0.1%
	$H/A \to \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4%
-	Total	40.9%	40.2%	45.4%	38.1%

Exclusion Strength per Analysis

Conclusion

Other searches

R-parity violation

arXiv:1710.07171

126

Assumptions:

- Variables not correlated
- No signal contribution in regions different other than D

$$\tau^{-1} = \Gamma = \frac{1}{2m_X} \int d\Pi_f |\mathcal{M}(m_X \to \{p_f\})|^2$$

There are many ways SUSY particles could be long lived

- Decay through heavy virtual particles
- Small decay phase space (ex: small Δm between NLSP and LSP)
- Small couplings (ex: decay to gravitino or small RPV coupling)

Experimentally very diverse

- \rightarrow depends on particle's properties: life-time, charge, decay
 - Decay within detector
 - Life-time < O(10 ns) highly displaced vertices, kinked tracks, disappearing tracks0</p>
 - Outside detector
 - Undetectable if neutral
 - Highly ionizing (dE/dx)slow (time-of-flight)
 - Decay out-of-time (wrt collision)

Mean decay length = $\gamma c \tau$ γ = Lorentz boost c = speed of light τ = mean life-time

Anomalous ionisation

$$\left\langle \frac{dE}{dx} \right\rangle \sim -\frac{z^2}{\beta^2} \cdot \left[\ln \left(\frac{\beta^2}{(1-\beta^2)} \right) - \beta^2 + C \right]$$

A charged LLP that is slowmoving (β <1) or has charge greater than 1 can be identified via anomalously large using for instance pixel detectors

Displaced objects

- Tracks
- Vertices
- Calorimeter deposits

 \rightarrow Need dedicated reconstruction algorithms

LLP can be stopped in the detector and decays long afterwards (τ >10ns)

Anomalous ionisation

$$\left|\frac{dE}{dx}\right\rangle \sim -\frac{z^2}{\beta^2} \cdot \left[\ln\left(\frac{\beta^2}{(1-\beta^2)}\right) - \beta^2 + C\right]$$

A charged LLP that is slowmoving (β <1) or has charge greater than 1 can be identified via anomalously large using for instance pixel detectors

Displaced objects

- Tracks
- Vertices
- Calorimeter deposits

 \rightarrow Need dedicated reconstruction algorithms

LLP can be stopped in the detector and decays long afterwards (τ >10ns)

Disappearing tracks

LLP: stopped gluinos

Split SUSY (unnatural model): very heavy scalars but the Higgs weak scale mass gauginos and in particular the gluinos:

$$\Gamma^{-1} \sim \left(\frac{m_S}{10^3 \text{ TeV}}\right)^4 \left(\frac{1 \text{ TeV}}{m_{\tilde{g}}}\right)^5 \times 10^{-4} \text{ ns}$$

- $m_s > 10^3 \text{GeV}$: the gluino is long lived and hadronize into a color-singlet state known as R-hadron $(g\tilde{g}, q\bar{q}\tilde{g}, qqq\tilde{g})$ before decaying
- m_s >10⁶GeV: it travels macroscopic distances before decaying
- m_s >10⁷GeV: it typically decays outside the detector or is stopped in the detector material
- m_s >10¹³GeV: it is effectively stable, since it has a lifetime longer than the age of the universe

R-hadrons that decay inside the detector can be detected via displaced or delayed decays, as well as disappearing tracks

LLP: stopped gluinos

Stopped gluinos generally can give rise to a detector signal that occurs after the triggering and readout time windows associated with the collision that produced the $LLP \rightarrow$ search for them in gaps in the proton bunch train

3564 possible slots for protons but only a fraction is filled

LLP: stopped gluinos

Signature: High energetic jets in absence of collisions Background: calorimeter noise, cosmics and beam halo Sensitivity: Massive particles with lifetimes 10 µs - 1000 s No excess observed

Gluinos (R-hadron)

137

Exercise 1

Assuming R-parity conservation, show that

- 1. SUSY particles must be produced in pairs
- 2. One SUSY particle (except the LSP) must always contains exactly one SUSY particle in its Decay products
- 3. The LSP is stable