Selected topics in BSM physics Nikola Makovec

# Outline

- 1. Heavy flavour physics:
  - 1. Rare decays:  $Bs \rightarrow \mu\mu$
  - 2. Lepton Flavor Universality tests
- 2. Vector-like quarks searches
- 3. Higgs boson and dark matter
- 4. Z' and W' searches

# Heavy flavour physics

1711.03624 1809.06229

# Flavour physics

#### "Flavor Physics" all the phenomena related to interactions differentiating the various fermion families

#### Flavour parameters in SM (massless $\nu$ ):

- 6 quark masses
- 3 lepton masses
- 3 quark mixing angles + 1 phase  $\Rightarrow$  CKM matrix

Gain deeper understanding of the underlying flavour structure of the Standard Model

- why 3 families ?
- why so different masses ?

#### Flavour physics is a wide topic:

- Neutrinos and charged leptons
- Kaon (strange) physics
- Charm and beauty physics
- Top quark physics



## Flavour physics

Sensitive to effects of new particles and forces beyond the Standard Model, even particles too massive to be produced



'Indirect' effects of new physics often appear before particles are directly discovered:

- GIM mechanism → predict charm quark existence 4 years before discovery
- CP violation in kaons → prediction of bottom & top quarks
- B meson mixing  $\rightarrow$  top quark much more massive than expected

# Rare b-hadron decays

Search for virtual contributions of new heavy particles in loops

#### Most interesting processes are those highly suppressed in SM

- flavor-changing neutral current (FCNC), forbidden at tree level in SM
- CKM suppressed
- helicity suppressed

Experimental probes with precise theory prediction

 uncertainty typically dominated by QCD; e.g. prefer leptonic to hadronic final states

Processes that may be modified (enhanced or suppressed) by orders of magnitude by NP

# $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$

 $B^0{}_{d,s} \! \rightarrow \! \mu^+ \mu^{\scriptscriptstyle -}$  are highly suppressed in SM:

- FCNC processes, only proceed through Z-pengiun, and box diagrams which are higher order process
- Cabibbo suppressed: | Vtq | <sup>2</sup>
- Helicity suppressed:  $\alpha \ [m\mu/mB]^2$ 
  - Bs is spin zero, and a vector particle mediating the decay always couples to 2 muons of the same chirality. In the limit mµ=0, when chirality=helicity, the muons spins add up, which forbids the decay by spin conservation

#### Precise theoretical prediction:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9} \mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$



# $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$ : supersymmetry



# $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$

#### Signal:

- Two muons from one displaced vertex;
- Momentum aligned with its flight direction;
- Invariant mass peaking at M(B<sub>s,d</sub>).

#### Background:

- Two semileptonic B decays
- One semileptonic B + a misidentified lepton
- Rare background from single B meson decays

#### Main ingredients:

- Huge sample of B mesons
- Efficient trigger
- Powerful selection
  - Vertex resolution
  - Mass resolution
  - Muon ID



 $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$ 



B<sub>s</sub>: 6.2σ (7.4σ expected) B<sub>d</sub>: 3.2σ (0.8σ expected)

 $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$ 



$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.69 \,{}^{+0.37}_{-0.35}\right) \times 10^{-9} \text{ and} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(0.6 \pm 0.7\right) \times 10^{-10}. \end{aligned}$$

11

# $\mathcal{B}^{O}_{d,s} \rightarrow \mu^{+}\mu^{-}$ : supersymmetry



## Lepton flavour universality

Weak interaction acts equally regardless of lepton flavor



Pillar of standard model – any deviation can **only** be caused by new physics

Theoretically clean... ... Experimentally challenging...

Well established in  $Z\to\ell\ell$ ,  $\tau\to\ell\nu\nu$ ,  $J\!/\!\psi\to\ell\ell$ ,  $\pi\to\ell\nu$ ,  $K\to\pi\ell\nu$ 

### Electroweak sector

#### LEP:

| $rac{\Gamma_{\mu\mu}}{\Gamma_{ m ee}}$ | = | $\frac{B(\mathbf{Z} \to \mu^+ \mu^-)}{B(\mathbf{Z} \to \mathbf{e^+ e^-})}$            | = | $1.0009 \pm 0.0028$ |
|-----------------------------------------|---|---------------------------------------------------------------------------------------|---|---------------------|
| $rac{\Gamma_{	au	au}}{\Gamma_{ m ee}}$ | = | $\frac{B(\mathbf{Z} \to \tau^+ \tau^-)}{B(\mathbf{Z} \to \mathbf{e}^+ \mathbf{e}^-)}$ | = | $1.0019 \pm 0.0032$ |

$$\mathcal{B}(W \to \mu \overline{\nu}_{\mu}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 0.993 \pm 0.019 \mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to e \overline{\nu}_{e}) = 1.063 \pm 0.027 \mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) = 1.070 \pm 0.026$$

LHC:







**Recovery procedure** in place to search for bremsstrahlung-like deposits in the calorimeter

- Limited efficiency but well reproduced in simulation
- Calorimeter resolution (1-2%) worse than spectrometer (~0.5%)

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$



3 trigger-based categories with different resolutions and different purities LOE: trigger fired by one of the electrons (ET>2.5GeV) LOH: trigger fired by the  $\kappa$  or the  $\pi$  (ET>3.5GeV) LOI: trigger fired by particles not associated to the signal candidate

17



$$R(K^*) = 0.66^{+0.11}_{-0.07} \pm 0.03 \ (2.1\sigma - 2.3\sigma) \text{ at low } q^2 \in [0.045, 1.1] \ \text{GeV}^2/c^4$$
$$R(K^*) = 0.69^{+0.11}_{-0.07} \pm 0.05 \ (2.4\sigma - 2.5\sigma) \text{ at central } q^2 \in [1.1, 6.0] \ \text{GeV}^2/c^4$$

18

## Lepton flavour universality

Several anomalies observed in LFU tests

- Statistical fluctuation?
- Issues with SM computations?
- BSM physics?
- Mixture of these effects?

Many models provided by theorists to explain the deviation

• ex: LQ, Z',...

More data will help to decrease statistical uncertainties

Run 2 data will bring 5 times more statistics

New channels can also be studied (ex:  $B \rightarrow \phi ll$ )

Belle2 is starting with a complementary approach to LHCb

# Vector-like quarks

arXiv:1207.5607 arXiv:0907.3155

# 4<sup>th</sup> generation

The SM does not predict the number of lepton families



A 4<sup>th</sup> neutrino coupling to the Z with a mass smaller than  $M_Z/2$  is excluded but a fourth lepton family is allowed if it differs from the other families

4<sup>th</sup> generation





Higgs boson cross section measurements strongly constrain a **chiral** 4th generation of quarks but not a **vector-like** 4<sup>th</sup> generation

;

## What are Vector-Like Quarks?

#### Vector-Like Quarks

- "Quark": color-triplet spin 1/2 fermions
- "Vector-like": left- and right-handed chirality components transform similarly under SU(2)

A gauge invariant mass term is present:  $-M\overline{\Psi}_L\Psi_R$ 

#### Predicted in many BSM models

- Warped or universal extra-dimensions
- Composite Higgs
- Little Higgs
- E6 grand unification
- ...

#### Introduce new quarks without the need of a new family

No axial anomaly

#### Can mix with their SM counterparts

- FCNC  $\rightarrow$  strong bounds on mixing parameters
- Mixing preferentially to the 3<sup>rd</sup> generation

Can regulate the Higgs mass-squared divergence

Attractive solution to the hierarchy problem









23

### Representations

|                 | SM quarks                                                                                                        | Singlets                                                                                          | Doublets                                                                                                           | Triplets                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                 | $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ | (U) $(D)$                                                                                         | $ \begin{pmatrix} X \\ U \end{pmatrix} \begin{pmatrix} U \\ D \end{pmatrix} \begin{pmatrix} D \\ Y \end{pmatrix} $ | $\begin{pmatrix} X \\ U \\ D \end{pmatrix}  \begin{pmatrix} U \\ D \\ Y \end{pmatrix}$ |
| $SU(2)_L$       | $q_L = 2$ $q_R = 1$                                                                                              | 1                                                                                                 | 2                                                                                                                  | 3                                                                                      |
| $U(1)_Y$        | $q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$                                                                             | 2/3 - 1/3                                                                                         | 7/6 $1/6$ $-5/6$                                                                                                   | 2/3 - 1/3                                                                              |
| $\mathcal{L}_Y$ | $-y^i_uar{q}^i_L H^c u^i_R \ -y^i_dar{q}^i_L V^{i,j}_{CKM} H d^j_R$                                              | $\begin{array}{c} -\lambda_u^i \bar{q}_L^i H^c U_R \\ -\lambda_d^i \bar{q}_L^i H D_R \end{array}$ | $-\lambda_u^i\psi_L H^{(c)}u_R^i\ -\lambda_d^i\psi_L H^{(c)}d_R^i$                                                 | $-\lambda_i \bar{q}_L^i \tau^a H^{(c)} \psi_R^a$                                       |
| $\mathcal{L}_m$ | not allowed                                                                                                      |                                                                                                   | $-Mar{\psi}\psi$                                                                                                   |                                                                                        |

Exotic charge partner ( $Q = T_z + Y$ ): Y<sub>-4/3</sub> or X<sub>5/3</sub> Other can mix with SM fields with a preference for the 3rd generation (top partners: U called T or t' and D called B or b')

## Production

#### Pair production:



Single production :



- rate model-dependent





Single production falls slower at high masses

Decays



The decay modes of the vector-like quarks T and B each have a charged current decay mode as would be found with chiral fourth generation SM quarks, but also two neutral current decay modes.

#### Decays



#### Decays



## Search strategy for TT pair production

3 decay modes: Wb, Zt and Ht



30

# Search strategy for TT pair production

3 decay modes: Wb, Zt and Ht



# Search strategy for TT pair production

3 decay modes: Wb, Zt and Ht



6 analyses in total Also sensitive to BB pair production

# H(bb)t+X analysis



#### Boosted unstable particles



# H(bb)t+X analysis



#### Two channels : 1-lepton vs 0-lepton

Using reclustered jets (Anti- $k_T$ , R = 1.0) from small-R jets (Anti- $k_T$ , R = 0.4) Final signal discrimination based on shape of **effective mass** 

$$m_{\rm eff} = \sum_{\rm objects} p_T + E_T^{\rm miss}$$

# H(bb)t+X analysis

#### Example of discriminating variables



Dominant bkg:  $\bar{t}t + b, \bar{t}t + c$
#### Example of discriminating variables





38

Main background: top pair production + heavy flavour jets

Estimated from MC with associated uncertainties profiled by fitting the data

Validation regions with lower jet multiplicity (signal contribution should be negligible)



34 signal regions

Main background: top pair production + heavy flavour jets

No excess observed





1-lepton channel : lepton + jets ... sensitive to large BR of  $T \rightarrow tH(bb)$ 0-lepton channel : jets +  $E_{Tmiss}$  ... sensitive to large BR of  $T \rightarrow tZ(vv)$ 

## Comparison of all analyses



Complementarity between analyses

## Comparison of all analyses



## Combination



44

## Combination



# Higgs boson and dark matter

#### **BELLE II AND LHC**b

| Belle II                                                                                    | e <sup>+</sup> e <sup>-</sup> → Υ(4S) | → BB | LHCb                                                                                           | pp ➡ BBX |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------|------|------------------------------------------------------------------------------------------------|----------|--|--|
| Two B's and nothing else                                                                    | Higher tagging efficiency             |      | Large pp background                                                                            |          |  |  |
| Small cross section $\sigma_{bb} \sim 1 \text{ nb}$ but $\sigma_{bb}/\sigma_{tot} \sim 1/4$ |                                       |      | Large cross section $\sigma_{ m bb}$ ~ 248 $\mu$ b but $\sigma_{ m bb}/\sigma_{ m tot}$ ~ 10-2 |          |  |  |
| Mostly B+/0                                                                                 |                                       |      | Not only $B^{+/0}$ : $B_s$ , $B_c$ , $\Lambda_b$ Better on heavy hadrons                       |          |  |  |
| Efficient, simple trigger                                                                   |                                       |      | Complex triggers                                                                               |          |  |  |
| Momentum conservation, ~ hermetic detector                                                  |                                       |      | pT conservation, no hermeticity                                                                |          |  |  |
| Similar performance for and e and                                                           | LFU tests                             |      | Better performance for $\mu$ than for e                                                        |          |  |  |
| High neutrals efficiencies                                                                  |                                       |      | Poor neutrals efficiencies                                                                     |          |  |  |
| B meson decay lengths: hundreds of $\mu$ m                                                  |                                       |      | B meson decay lengths: mm Good separation between vertices                                     |          |  |  |





...

## Dark matter

Existence of dark matter known through its gravitational interactions

- Galactic rotation
- Weak lensing
- CMB

But the underlying nature of dark matter (DM) remains unknown

There is a well established case for weakly interacting dark matter particles (WIMPs)

Such particles may be produced in high energy pp collisions at the LHC and in particular through decays of the Higgs boson



## Higgs portal

Higgs portal model: Higgs boson mediates the interaction between DM and SM Two free parameters: dark matter mass and coupling between the Higgs boson and dark matter



## Higgs portal

Higgs portal model: Higgs boson mediates the interaction between DM and SM Two free parameters: dark matter mass and coupling between the Higgs boson and dark matter



In the SM, H  $\rightarrow$  invisible only from H  $\rightarrow$  ZZ  $\rightarrow vv vv$ B(H  $\rightarrow$  inv) = 0.026x0.20<sup>2</sup> = 0.1% Any deviation would indicate BSM physics! Powerful channel for DM searches if  $m_{DM} < m_{H} = 2$ 

## Higgs portal with scalar DM

$$\Delta \mathcal{L}_S = -\frac{1}{2}m_S^2 S^2 - \frac{1}{4}\lambda_S S^4 - \frac{1}{4}\lambda_{hSS} H^{\dagger} H S^2$$

Invisible branching ratio:

$$_{\rm H} - - - - - \left\langle \int_{\rm s}^{\rm s} \Gamma_{h \to SS}^{\rm inv} = \frac{\lambda_{hSS}^2 v^2 \beta_S}{64\pi m_h} \qquad \text{with} \qquad \beta_X = \sqrt{1 - 4M_X^2/m_h^2}$$

The spin-independent DM-nucleon interaction:

$$\sigma_{S-N}^{SI} = \frac{\lambda_{hSS}^2}{16\pi m_h^4} \frac{m_N^4 f_N^2}{(M_S + m_N)^2} \qquad \begin{array}{c} {\rm f_N} \, {\rm is \ a \ nuclear \ for parameterizing \ nucleon \ coupling \ nucleon \ nucleon \ nucleon \ coupling \ nucleon \ nu$$

orm factor the Higgsng

Annihilation cross-section into light fermion:

$$\sum_{\rm H}^{\rm SM} \left\langle \sigma_{\rm ferm}^S v_r \right\rangle = \frac{\lambda_{hSS}^2 m_{\rm ferm}^2}{16\pi} \ \frac{1}{(4M_S^2 - m_h^2)^2} \qquad {\rm v_r \ is \ the \ DM \ relative \ velocity.}$$

## Overview of search channels for $H \rightarrow invisible$



## VBF channel

Selection based on Missing ET and two VBF jets ( large  $|\Delta\eta|$  and large  $m_{ii}$ )



## Background



Use Control Regions with same kinematic selections but different lepton requirement to constrain background in Signal Region

## Analysis selection

| Observable                                                                           | Shape analysis                                                       | Cut-and-count analysis   | Target background                                 |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|---------------------------------------------------|
| Leading (subleading) jet                                                             | $p_{\rm T} > 80$ (                                                   | (40) GeV, $ \eta  < 4.7$ | All                                               |
| $p_{\mathrm{T}}^{\mathrm{miss}}$                                                     |                                                                      | >250 GeV                 | QCD multijet, $t\bar{t}$ , $\gamma$ +jets, W+jets |
| $\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, ec{p}_{\mathrm{T}}^{\mathrm{jet}})$ |                                                                      | >0.5 rad                 | QCD multijet, $\gamma$ +jets                      |
| Muons (electrons)                                                                    | $N_{\mu,e} = 0$ with $p_T$                                           | $ \eta  < 2.4 (2.5)$     | W+jets, $Z(\ell \ell)$ +jets                      |
| $\tau_{\rm h}$ candidates                                                            | $N_{\tau_{\rm b}} = 0$ with $p_{\rm T} > 18 {\rm GeV},  \eta  < 2.3$ |                          | W+jets, $Z(\ell \ell)$ +jets                      |
| Photons                                                                              | $N_{\gamma} = 0$ with $p_{T} > 15 \text{GeV},  \eta  < 2.5$          |                          | $\gamma$ +jets, V $\gamma$                        |
| b quark jet                                                                          | $N_{jet} = 0$ with $p_T > 20$ GeV, CSVv2 > 0.848                     |                          | tī, single top quark                              |
| $\eta_{j1} \eta_{j2}$                                                                | <0                                                                   |                          | $Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets  |
| $ \Delta \phi_{ m jj} $                                                              | <1.5 rad                                                             |                          | $Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets  |
| $ \Delta \eta_{\rm ii} $                                                             | >1                                                                   | >4                       | $Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets  |
| m <sub>ii</sub>                                                                      | >200 GeV                                                             | >1.3 TeV                 | $Z(\nu\overline{\nu})$ +jets, $W(\ell\nu)$ +jets  |



55

## Results

#### Cut-and-count

| Process                             | Signal region                                                      |
|-------------------------------------|--------------------------------------------------------------------|
| $Z(\nu\nu)$ (QCD)                   | $810 \pm 71$                                                       |
| $Z(\nu\nu)$ (EW)                    | $269 \pm 33$                                                       |
| $Z(\ell\ell)$ (QCD)                 |                                                                    |
| $Z(\ell\ell)$ (EW)                  | _                                                                  |
| $W(\ell \nu)$ (QCD)                 | $499 \pm 33$                                                       |
| $W(\ell\nu)$ (EW)                   | $141 \pm 11$                                                       |
| Top quark                           | $37.8\pm8.8$                                                       |
| Dibosons                            | $18.6 \pm 6.2$                                                     |
| Others                              | $3.3 \pm 2.3$                                                      |
| Total bkg.                          | $1779 \pm 96$                                                      |
| Signal $m_{\rm H} = 125  {\rm GeV}$ | $743 \pm 129 \ \mathcal{B}(\mathrm{H} \rightarrow \mathrm{inv}) =$ |
| Data                                | 2035                                                               |
|                                     |                                                                    |



upper limits on the invisible Higgs boson branching fraction

| Analysis | Observed limit | Expected limit |
|----------|----------------|----------------|
| Shape    | 0.33           | 0.25           |
| CC       | 0.58           | 0.30           |

## Combination



| Analysis   | Final state                       | Signal composition              | Observed limit | Expected limit |
|------------|-----------------------------------|---------------------------------|----------------|----------------|
| qqH-tagged | VBF-jets + $p_{\rm T}^{\rm miss}$ | 52% qqH, 48% ggH                | 0.28           | 0.21           |
| VH-tagged  | $Z(\ell\ell) + p_T^{miss}$        | 79% qqZH, 21% ggZH              | 0.40           | 0.42           |
|            | $V(qq') + p_{\rm T}^{\rm miss}$   | 39% ggH, 6% qqH, 33% WH, 22% ZH | 0.50           | 0.48           |
| ggH-tagged | jets + $p_{\rm T}^{\rm miss}$     | 80% ggH, 12% qqH, 5% WH, 3% ZH  | 0.66           | 0.59           |







## Direct detection



 $\sigma_{\chi N}$  probed to-date ~ 10<sup>-44</sup> cm<sup>2</sup>

What is measured (with different target nuclei and detectors) : energy of the recoiling nucleus What are the challenges: very small energy, very large backgrounds and very small rate

## Comparison with direct detection



## Z' and W' searches

arXiv:1010.6058

## New gauge bosons

The SM gauge group  $SU(3)_C x SU(2)_L x U(1)_Y$  can be extended to solve some of the puzzles not explained by the SM, possibly leading to

- An additional heavy neutral boson Z'
- An additional heavy charged boson W'

Simplest extension:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'.$$

A massive spin-1 Z' arises from the breaking at the TeV scale of the U(1)' group

The new boson has couplings to SM fermions given by the coefficients  $g_f^V$  and  $g_f^A$  of the Lagrangian interaction term

$$\mathcal{L}_{NC} = \frac{g'}{2} Z'_{\mu} \bar{f} \gamma^{\mu} (g^f_V - g^f_A \gamma^5) f.$$

## Models

#### E6 GUT

- $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
- $SU(5) \rightarrow SU(3)c \times SU(2)_L \times U(1)_Y$
- $Z' = Z'_{\psi} \cos \theta + Z'_{\chi} \sin \theta$  (can be at the TeV scale)
- The value of  $\theta$  determine the Z' couplings to fermions

#### Left-right symmetric model

- $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \rightarrow SU(2)_L \times U(1)_{3R} \times U(1)_{B-L} \rightarrow SU(2)_L \times U(1)_Y$
- Both W' and Z'
- $Z' = Z'_{3R} \cos \phi + Z'_{B-L} \sin \phi$

#### Sequential Standard Model (SSM)

- Spin 1 heavy boson with SM-like couplings
- Mainly used as a benchmark model

#### **Composite Higgs**

- Analogue of  $\rho$  of QCD

#### Warped extra dimension

Excited Kaluza-Klein mode of the graviton (spin-2) can give similar signatures

## Z' Models

| U'(1) model             | Mixing angle   | $\mathcal{B}(\ell^+\ell^-)$ | $C_{u}$               | Cd                    | $c_{\rm u}/c_{\rm d}$ | $\Gamma_{Z'}/M_{Z'}$ |
|-------------------------|----------------|-----------------------------|-----------------------|-----------------------|-----------------------|----------------------|
| $E_6$                   |                |                             |                       |                       |                       |                      |
| $U(1)_{\chi}$           | 0              | 0.061                       | $6.46	imes10^{-4}$    | $3.23 	imes 10^{-3}$  | 0.20                  | 0.0117               |
| $\mathrm{U}(1)_\psi$    | $0.5\pi$       | 0.044                       | $7.90	imes10^{-4}$    | $7.90	imes10^{-4}$    | 1.00                  | 0.0053               |
| $\mathrm{U}(1)_\eta$    | $-0.29\pi$     | 0.037                       | $1.05	imes10^{-3}$    | $6.59	imes10^{-4}$    | 1.59                  | 0.0064               |
| $U(1)_{S}$              | $0.129\pi$     | 0.066                       | $1.18	imes10^{-4}$    | $3.79	imes10^{-3}$    | 0.31                  | 0.0117               |
| U(1) <sub>N</sub>       | $0.42\pi$      | 0.056                       | $5.94	imes10^{-4}$    | $1.48	imes10^{-3}$    | 0.40                  | 0.0064               |
| LR                      |                |                             |                       |                       |                       |                      |
| $U(1)_R$                | 0              | 0.048                       | $4.21	imes10^{-3}$    | $4.21	imes10^{-3}$    | 1.00                  | 0.0247               |
| $U(1)_{B-L}$            | $0.5\pi$       | 0.154                       | $3.02 	imes 10^{-3}$  | $3.02 	imes 10^{-3}$  | 1.00                  | 0.0150               |
| $U(1)_{LR}$             | $-0.128\pi$    | 0.025                       | $1.39	imes10^{-3}$    | $2.44	imes10^{-3}$    | 0.57                  | 0.0207               |
| U(1) <sub>Y</sub>       | $0.25\pi$      | 0.125                       | $1.04 	imes 10^{-2}$  | $3.07 	imes 10^{-3}$  | 3.39                  | 0.0235               |
| GSM                     |                |                             |                       |                       |                       |                      |
| U(1) <sub>SM</sub> (SSM | 1) $-0.072\pi$ | 0.031                       | $2.43 \times 10^{-3}$ | $3.13 \times 10^{-3}$ | 0.78                  | 0.0297               |
| $U(1)_{T3I}$            | 0              | 0.042                       | $6.02 \times 10^{-3}$ | $6.02 \times 10^{-3}$ | 1.00                  | 0.0450               |
| $U(1)_{O}$              | $0.5\pi$       | 0.125                       | $6.42 \times 10^{-2}$ | $1.60 \times 10^{-2}$ | 4.01                  | 0.1225               |
|                         | 0.070          | 0.120                       | 0.12 / 10             | 1.00 / 10             | 1.01                  | 0.1220               |

Search for dilepton resonances

$$M = \sqrt{2E_1E_2(1 - \cos\theta)}$$



## Search for dilepton resonances



Clear experimental signature

- 2 high pt leptons (electron or muon) with large invariant mass
- $\tau$  allows to probe couplings to 3rd generation leptons

## Resolution



Better mass resolution for electrons compared to muons

## Efficiency



But higher efficiency for muons

Mass spectra



The MC background is normalized to the Z peak

Limits



Results are interpreted in the ratio of the signal cross section/Z cross section so one is insensitive to the uncertainty on the luminosity

70

The statistical analysis from the electron channel and muon channel are combined in order to place stronger limits on the lower bounds of the Z' mass

## Full run 2 result



m<sub>x</sub> [GeV]

| A2             | Lower limits on $m_{Z'}$ [TeV] |     |          |     |            |     |  |  |
|----------------|--------------------------------|-----|----------|-----|------------|-----|--|--|
| Model          | ee                             |     | $\mu\mu$ |     | $\ell\ell$ |     |  |  |
|                | obs                            | exp | obs      | exp | obs        | exp |  |  |
| $Z'_{\psi}$    | 4.3                            | 4.3 | 4.0      | 3.8 | 4.5        | 4.5 |  |  |
| $Z'_{\chi}$    | 4.6                            | 4.6 | 4.2      | 4.1 | 4.8        | 4.7 |  |  |
| $Z'_{\rm SSM}$ | 4.9                            | 4.9 | 4.5      | 4.4 | 5.1        | 5.0 |  |  |

71

## Distinguishing models

In the Z/Z' rest frame:  $A_{FB} = \frac{N_F - N_B}{N_F + N_B}$ 

Quark direction infers from the Z' direction since the quarks have in average higher x than antiquarks


## Search for $\mathcal{W}' \to \mathcal{W}$

Signature: high pT electron + high Etmiss  $\rightarrow$  peak in transverse mass distribution

$$M_{\rm T} = \sqrt{2p_{\rm T}^{\ell} p_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\ell, \vec{p}_{\rm T}^{\rm miss})])},$$





## Search for $\mathcal{W}' \to \mathcal{W}$



74

## Search for $W' \rightarrow h$ : RPV SUSY interpretation







## The b quark

- The heaviest quark that forms bound states (mB ~ 5.3 GeV)
- o Decays outside its family

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ 

 $\Rightarrow$  large lifetime ~ 1.5 ps

 $\Rightarrow$  very large number of decays modes

 $\Rightarrow$  large CP violation effects

M.-H. Schune



## GIM mechanism (1970)



$$\frac{\mathcal{B}(K^0 \to \mu^+ \mu^-)}{\mathcal{B}(K^+ \to \mu^+ \nu_\mu)} = \frac{7 \times 10^{-9}}{0.64} \simeq 10^{-8}$$

Process  $K^{\circ} \rightarrow \mu^{+}\mu^{-}$  apparently highly suppressed (based on exp.) – but why?

$$\begin{pmatrix} d'\\ s' \end{pmatrix} = \begin{pmatrix} \cos\theta_C & \sin\theta_C\\ -\sin\theta_C & \cos\theta_C \end{pmatrix} \begin{pmatrix} d\\ s \end{pmatrix}$$

## GIM mechanism (1970)





$$\left(\begin{array}{c}d'\\s'\end{array}\right) = \left(\begin{array}{cc}\cos\theta_C & \sin\theta_C\\-\sin\theta_C & \cos\theta_C\end{array}\right) \left(\begin{array}{c}d\\s\end{array}\right)$$

$$\frac{\mathcal{B}(K^0 \to \mu^+ \mu^-)}{\mathcal{B}(K^+ \to \mu^+ \nu_\mu)} = \frac{7 \times 10^{-9}}{0.64} \simeq 10^{-8}$$

Process  $K^0 \rightarrow \mu^+ \mu^-$  apparently highly suppressed (based on exp.) – but why?

Add charm quark  $\Rightarrow$  add second diagram with similar amplitude but opposite sign

 $\Rightarrow$  total amplitude highly suppressed!

Cancellation not perfect because u and c quarks have different mass.

 $J/\psi$  meson (cc bound state) discovered simultaneously at BNL and SLAC in 1974

#### FCNC suppressed in the SM

## The QCD challenge

Quarks change flavour through the charged weak interaction



# The QCD challenge

Quarks change flavour through the charged weak interaction But... they are bound by the strong interaction into hadrons



⇒ Many possible quark combinations, many possible decays to different final states

# The QCD challenge

Quarks change flavour through the charged weak interaction But... they are bound by the strong interaction into hadrons



 $\Rightarrow$  Many possible quark combinations, many possible decays to different final states

⇒ Cannot observe weak interaction in isolation – need to take into account non-perturbative QCD effects

## CKM or quark mixing matrix



Only 4 independent parameters (3 angles + 1 phase)

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$

 $\lambda \sim 0.22$  A  $\sim 0.8$   $\rho = 0.2$   $\eta = 0.35$ 

## The $b \rightarrow d$ unitarity triangle



Area of the triangle proportional to CPV

## Testing the CKM mechanism



## Back to the future

## Projection from 2007



## The $b \rightarrow d$ unitarity triangle

# Wide program of measurements to over-constrain the SM parameter-space



With the current precision, CP violation well described by the CKM mechanism

## The $b \rightarrow d$ unitarity triangle



 $\gamma$  is angle with largest uncertainty





## $B \rightarrow D^{(*)}h$

Compare  $I=\mu,\tau$  rates for  $B \rightarrow DIv$ 

$$R_{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}$$

Tree-level in SM, but can have NP contributions (e.g. leptoquark or charged Higgs)

#### Leptoquark:

- hypothetical particles with non-zero baryon and lepton quantum numbers

- Appear in many BSM models, e. g. GUTs



 $B \rightarrow D^{(*)}h$ 



SM prediction deviates from unity due to different  $\mu/\tau$  masses (available phase space) Combined significance of ~3 $\sigma$ 

## Vector-like quarks

The left-handed and right-handed chiralities of a vector-like fermion  $\psi$  transform in the same way under the SM gauge groups  $SU(3)_c \times SU(2)_L \times U(1)_Y$ 

## Why are they called "vector-like"?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left( J^{\mu +} W^+_{\mu} + J^{\mu -} W^-_{\mu} \right)$$
 Charged current Lagrangian

SM chiral quarks: ONLY left-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \quad \text{with} \quad \begin{cases} J_L^{\mu+} = \bar{u}_L \gamma^{\mu} d_L = \bar{u} \gamma^{\mu} (1 - \gamma^5) d = V - A \\ J_R^{\mu+} = 0 \end{cases}$$

• vector-like quarks: BOTH left-handed and right-handed charged currents  $J^{\mu +} = J_L^{\mu +} + J_R^{\mu +} = \bar{u}_L \gamma^{\mu} d_L + \bar{u}_R \gamma^{\mu} d_R = \bar{u} \gamma^{\mu} d = V$ 

## Vector-like quarks



#### Not all decays may be kinematically allowed

it depends on representations and mass differences



# **Belle(II), LHCb side by side**

 $\begin{array}{l} \begin{array}{c} \textbf{Belle}\left(\textbf{II}\right) \\ e^+e^- \rightarrow Y(4S) \rightarrow b\,\overline{b} \\ \textbf{at}\,Y(\textbf{4S}) \colon \textbf{2} \; \textbf{B}^{\,\textbf{s}}\left(\textbf{B}^0 \; \textbf{or} \; \textbf{B}^+\right) \textbf{and} \\ \textbf{nothing else} \Rightarrow \textbf{clean events} \\ (flavour tagging, B tagging, missing energy \\ \sigma_{b\overline{b}} \sim 1 \, nb \Rightarrow 1 \; fb^{-1} \; produces \; 10^6 \, B\,\overline{B} \end{array}$ 

 $\sigma_{b\bar{b}}/\sigma_{total} \sim 1/4$ 

### **LHCb**

 $p p \rightarrow b \overline{b} X$ production of  $B^+$ ,  $B^0$ ,  $B_s$ ,  $B_c$ ,  $\Lambda_b$ ... but also a lot of other particles in the event  $\Rightarrow$  lower reconstruction efficiencies

 $\sigma_{b\overline{b}}$  much higher than at the  $Y(4\,S)$ 

|          | √s [GeV] | σ <sub>ьნ</sub> [nb] | $\sigma_{ m bb}$ / $\sigma_{ m tot}$ |
|----------|----------|----------------------|--------------------------------------|
| HERA pA  | 42 GeV   | ~30                  | ~10 <sup>-6</sup>                    |
| Tevatron | 2 TeV    | 5000                 | ~10 <sup>-3</sup>                    |
| LHC      | 8 TeV    | ~3x10 <sup>5</sup>   | ~ 5x10 <sup>-3</sup>                 |
|          | 14 TeV   | ~6x10 <sup>5</sup>   | ~10 <sup>-2</sup>                    |

b b production cross-section at IHCb ~ 500,000 × BaBar/Belle !!

 $\sigma_{b\overline{b}}/\sigma_{total}$  much lower than at the Y(4S)  $\Rightarrow$  lower trigger efficiencies

#### B mesons live relativey long

mean decay length  $\beta \gamma c \tau \sim 200 \mu m$ data taking period(s) [1999-2010] = 1 ab<sup>-1</sup> [2019-...] = ... [Belle II from 2019]  $\rightarrow$  50 ab<sup>-1</sup> (near) future [Belle II from 2019]  $\rightarrow$  50 ab<sup>-1</sup> (near) future [LHCb upgrade from 2021] Mixing

y: Yukawa coupling M: bare VLQ mass

$$\mathcal{L}_{\text{mass}} = -\left( \begin{array}{cc} \bar{t}_L^0 & \bar{T}_L^0 \end{array} \right) \left( \begin{array}{cc} y_{33}^u \frac{v}{\sqrt{2}} & y_{34}^u \frac{v}{\sqrt{2}} \\ y_{43}^u \frac{v}{\sqrt{2}} & M^0 \end{array} \right) \left( \begin{array}{cc} t_R^0 \\ T_R^0 \end{array} \right)$$
Weak eigenstate basis

Mass eigenstate basis

$$\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = \begin{pmatrix} c_{L,R}^u & -s_{L,R}^u e^{i\phi_u} \\ s_{L,R}^u e^{i\phi_u} & c_{L,R}^u \end{pmatrix} \begin{pmatrix} t_{L,R}^0 \\ T_{L,R}^0 \end{pmatrix} \begin{pmatrix} s_{L,R}^u \equiv \sin\theta_{L,R}^u \\ c_{L,R}^u \equiv \cos\theta_{L,R}^u \end{pmatrix}$$

$$\tan 2\theta_L^q = \frac{\sqrt{2}|y_{34}^q|vM^0}{(M^0)^2 - |y_{33}^q|^2v^2/2 - |y_{34}^q|^2v^2/2} \quad \text{(singlets, triplets)},$$
  
$$\tan 2\theta_R^q = \frac{\sqrt{2}|y_{43}^q|vM^0}{(M^0)^2 - |y_{33}^q|^2v^2/2 - |y_{43}^q|^2v^2/2} \quad \text{(doublets)},$$

For large  $M_0$ , mixing proportional to  $m/M_0$  $\rightarrow$  Larger mixing for 3rd generation