

Dark Matter @ Colliders

Benjamin Fuks

LPTHE / Sorbonne Université

BSM lectures @ NPAC

07 March 2022

Dark Matter @ Colliders

Benjamin Fuks - 07.03.2022 - |

Outline

New physics and dark matter

Dark matter in cosmology and at colliders

Dark matter is searched for directly, indirectly and at colliders
 This huge experimental effort offers a strategy to constrain models

From dark matter to missing transverse energy

- - \star Larger $\sqrt{s} >$ heavier new particles
- Unknown longitudinal momenta
 - \star Use of quantities invariant under longitudinal boosts (p_T , etc.)

Summary

From dark matter to missing transverse energy

Summary

From dark matter to missing transverse energy

- *Unknown *partonic* centre-of-mass energy \sqrt{s}
 - \star Larger $\sqrt{s} >$ heavier new particles
- Unknown longitudinal momenta
 - \star Use of quantities invariant under longitudinal boosts (p_T , etc.)

Energy-momentum conservation (in the transverse plane)

- The initial-state total transverse momentum is zero
 - \succ the final-state total pT is zero
- Invisible particles (DM in particular) = missing momentum
 - \star Weakly interacting and neutral \succ detector is transparent
 - ★ Presence inferred from momentum imbalance

$$\mathbf{E}_T = ||\mathbf{p}_T|| = \left|\left|-\sum_{\text{visible}}\mathbf{p}_T\right|\right|$$

*****Beware: MET \neq DM

- **★** MET could originate from neutral long-lived states, or even neutrinos
- **★** DM may not yield large MET (if light or from a compressed spectrum)

How to detect missing energy?

Benjamin Fuks - 07.03.2022 - 5

Detecting missing energy at colliders (I)

Detecting missing energy at colliders (2)

Detecting missing energy at colliders (3)

Dark matter signatures at the LHC

Dark matter signatures at the LHC

Dark matter signatures at the LHC

Benjamin Fuks - 07.03.2022 - 9

Almost two decades of mono-X searches...

The mono-X (DM) story is almost 20 years old	· · · · · · · · · · · · · · · · · · ·
The problem was to trigger on DM signals \rightarrow need for	a visible object
Introduced first as mono-photons in lepton collisions	[Birkedal, Matchev & Perelstein (PRD`04)]
Extension to mono-jets in hadron collisions	[Feng, Su & Takayama (PRL`06)]

Almost two decades of mono-X searches...

Almost two decades of mono-X searches...

Towards the modern epoch

New dark signals: mono-top, mono-Z, mono-lepton & mono-Higgs
[Andrea, BF & Maltoni (PRD`II); Bell, Dent, Galea, Jacques, Krauss & Weiler (PRD`I2); Bai & Tait (PLB`I3); Petrov & Shepherd (PLB`I4)]

First experimental studies: CDF, and then ATLAS/CMS

A dark matter search strategy at the LHC

A typical LHC dark matter search strategy
 Requirement of a significant amount of missing transverse energy
 Requirement of a significantly hard visible object (jet, di-lepton pair, photon, etc.)
 Extra constraints (angular correlations, vetoes, etc.) to reduce the backgrounds
 Cut and count and looking for excesses over the background

A dark matter search strategy at the LHC

A typical LHC dark matter search strategy

- Requirement of a significant amount of missing transverse energy
- Requirement of a significantly hard visible object (jet, di-lepton pair, photon, etc.)
- *Extra constraints (angular correlations, vetoes, etc.) to reduce the backgrounds
- Cut and count and looking for excesses over the background

Backgrounds - the mono-jet case

Invisible Z decays

 → irreducible backgrounds

 W decays with a lost lepton

 → not very frequent but large (total) rate
 → Mis-measurements in multi-jet production
 → rare, but huge QCD total rate
 → steeply falling with the MET value

Outline

An EFT interpretation

Dark Matter @ Colliders

Benjamin Fuks - 07.03.2022 - 13

Connecting direct detection and colliders

Connecting direct detection and colliders

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

DM direct detection in a nutshell

[Drees & Nojiri (PRD`93); Hisano, Nagai & Nagata (JHEP`I5)]

Complementary constraints

Complementary constraints

The failure of the EFT interpretation

The failure of the EFT interpretation

The failure of the EFT interpretation

Dark Matter @ Colliders

Benjamin Fuks - 07.03.2022 - 17

Dark Matter simplified models

The s-channel case

From EFT to simplified model interpretations

From EFT to simplified model interpretations

Simplified dark matter models @ LHC

Simplified dark matter models @ LHC

s-channel models at colliders

s-channel models at colliders

Example: top-philic fermion DM / scalar mediator

Example: top-philic fermion DM / scalar mediator

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

 $\log_{10}(g_t)$

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Details on the simulations

◆ Several key aspects behind the previous results
 ◆ Simulations at the NLO-QCD accuracy → precision predictions
 ◆ Recasting with public tools
 ★ Many ATLAS and CMS searches for new physics
 ★ Interpretation within popular frameworks and simplified models
 ★ Need for interpretations in all kind of models

Dark matter simplified models

The t-channel case

t-channel models at colliders

SM

t-channel models at colliders

Benjamin Fuks - 07.03.2022 - 26

Recasting ATLAS mono-jet search (36/fb)

CLs exclusion from the best region (I TeV mediator; I 50 GeV DM)

Process	CL_s [LO]	E_T^{miss} constraint	CL_s [NLO]	E_T^{miss} constrtaint
Total	$75.6^{+10.1}_{-10.5}$ %	$\in [700,800]~{\rm GeV}$	$97.8^{+0.9}_{-1.4}$ %	$\geq 700 {\rm ~GeV}$
XX	$0.7^{+0.6}_{-0.6}$ %	$\in [250, 300]~{\rm GeV}$	$3.6^{+0.3}_{-0.6}$ %	$\geq 900~{\rm GeV}$
XY	$62.7^{+12.3}_{-10.4}$ %	$\in [500,600]~{\rm GeV}$	$83.9^{+2.9}_{-4.3}$ %	$\in [700,800]~{\rm GeV}$
YY [total]	$24.0^{+3.1}_{-3.1}$ %	$\geq 900~{\rm GeV}$	$58.1^{+2.2}_{-3.1}$ %	$\geq 900 {\rm ~GeV}$
YY [QCD]	$10.7^{+4.4}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$17.0^{+2.1}_{-2.1}$ %	$\geq 900~{\rm GeV}$
YY [t-channel]	$29.6^{+3.3}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$38.9^{+1.2}_{-1.8}$ %	$\geq 900~{\rm GeV}$
[Arina, BF & Mantani (EPJC`20)				

NLO simulations are crucial

- * Modification of the rates (larger yields) and shapes (different best region)
- \star Better control of the theory errors
- Considering all signal components is crucial
 - \star One component alone is not sufficient to exclude the scenario

Ist gen. mediator & Majorana DM

Ist gen. mediator & Majorana DM

More strongly coupled dark matter

Dark Matter @ Colliders

More strongly coupled dark matter

$\blacklozenge \lambda = 5$

- *All channels contribute (larger rates) $\star XX \sim \lambda^4$ $\star XY \sim \lambda^2$ $\star YY \sim \lambda^4 + \lambda^2 + \lambda^0$
- Simulations unreliable
 - ★The NWA breaks down
 - $\star \Gamma_Y/M_Y > 10\%$ or compressed spectrum
 - ★Most 'excluded' points inconclusive
- * Γ_Y plays a role for large λ values

More strongly coupled dark matter

$\lambda = 5$

- *All channels contribute (larger rates) $\star XX \sim \lambda^4$ $\star XY \sim \lambda^2$ $\star YY \sim \lambda^4 + \lambda^2 + \lambda^0$
- Simulations unreliable
 - ★The NWA breaks down
 - $\star \Gamma_Y/M_Y > 10\%$ or compressed spectrum
 - ★Most 'excluded' points inconclusive
- Γ_Y plays a role for large λ values
- Sensitivity to all channels
 - Different jet properties
 - \rightarrow XX: small N_j, mostly soft jets
 - \rightarrow XY: medium N_j, hard and softer jets
 - \rightarrow YY: large N_j, hard jets
 - Dedicated regions for all cases

Fixed coupling vs fixed width

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB`20)]

$\lambda = 2 \text{ vs } \Gamma_Y/M_Y = 5\%$

Signal = XX + XY + YY

Regions with 2 very hard jets (SR2j) ~YY production and decay

✤Regions with more not so hard jets (SR4j, SR5j, SR6j) ~ compressed regime

Reliability of the simulations

 \star Fixed Γ_Y/M_Y : compressed spectrum = non-perturbative regime

 \star Fixed λ : split spectrum = broad mediator

Fixed coupling vs fixed width

[Arina, BF, Mantani, Mies, Panizzi & Salko (PLB`20)]

$\lambda = 2 \text{ vs } \Gamma_Y/M_Y = 5\%$

Signal = XX + XY + YY

Regions with 2 very hard jets (SR2j) ~YY production and decay

♣Regions with more not so hard jets (SR4j, SR5j, SR6j) ~ compressed regime

Reliability of the simulations

★ Fixed Γ_Y/M_Y : compressed spectrum = non-perturbativ Care to be taken with barogue setups

★ Fixed λ : split spectrum = broad mediator

Dark Matter @ Colliders

Benjamin Fuks - 07.03.2022 - 30

Beyond simplified models

Dark Matter @ Colliders

Benjamin Fuks - 07.03.2022 - 31

Benchmark models

More complex than simplified models

*A large set of models exist \rightarrow focus on few benchmarks (e.g. supersymmetry)

- Dedicated searches for those specific benchmarks
 - \star Simplified models encapsulate characteristics of varied theories

✦ 3 (subjective) examples

- The Higgs portal model (very few parameters and one new state)
- Dilaton-induced DM (very few parameters and two new states)
- Supersymmetry (lots of parameters and new states)

There are many more: dark photons, axions, etc. (not covered here)

I. The Higgs portal

I. The Higgs portal

2. Dilaton induced DM

2. Dilaton induced DM

3. Supersymmetry (I)

3. Supersymmetry (I)

3. Supersymmetry (I)

Benjamin Fuks - 07.03.2022 - 35

3. Supersymmetry (2)

Summary

3. Supersymmetry (2)

Outline

New physics and dark matter

Dark matter is an important motivation for new physics *Galaxy rotation curves, gravitational lensing, cosmic microwave background, ... DM SM Searched for in a complementary way Dark matter relic abundance must be reproduced Dark matter direct/indirect detection constraints Production at (hadron) colliders SM DM Many signatures are considered at the LHC From various benchmarks: simplified models, EFTs, UV-complete models Accurate predictions are necessary for the best conclusions NLO-QCD computations for BSM are automated

New physics and dark matter

- Dark matter is an important motivation for new physics *Galaxy rotation curves, gravitational lensing, cosmic microwave background, ... DM SM Searched for in a complementary way Dark matter relic abundance must be reproduced Dark matter direct/indirect detection constraints Production at (hadron) colliders SM DM Many signatures are considered at the LHC From various benchmarks: simplified models, EFTs, UV-complete models Accurate predictions are necessary for the best conclusions
 - NLO-QCD computations for BSM are automated

A lot of fun is planned for the next decades