
0.1 E1

AµνSµν = AρσSρσ = AρσSσρ = −AσρSσρ = −AµνSµν . (1)

Thus AµνSµν = 0.

0.2 E2

By definition :

∂µ =
∂

∂xµ
, ∂µ =

∂

∂xµ
. (2)

It follows that

∂µ =
∂

∂xµ
=
∂xν
∂xµ

∂

∂xν
=
∂(ηνρx

ρ)

∂xµ
∂

∂xν
= ηνρδ

ρ
µ

∂

∂xν
= ηνµ

∂

∂xµ
= ηνµ∂

ν (3)

Thus :
∂µ = ηνµ∂

ν and ∂µ = ηνµ∂ν . (4)

We can prove by brute force (good exercice) that ∂µ transforms as a covariant
vector and that ∂µ transforms as a contravariant vector. We can also guess that
the reason why differentiating with respect to a contravariant vector yields a
covariant vector is that we remove a contravariant vector when differentiating.
Therefore, an elegant solution is to consider the scalar S = xνyν and to act with
∂µ :

∂µS = ∂µ(xνyν) = δνµ yν = yµ. (5)

yµ being a covariant vector and S a scalar, ∂µ must be a covariant vector.

0.3 E3

T is a tensor, then :

T ′µν = Λµ
µ′

Λν
ν′
Tµ′ν′ . (6)

For its trace we get :

T ′
ν
ν = ηνµT ′µν = ηνµΛµ

µ′
Λν

ν′
Tµ′ν′ = ηνµΛµµ′Λνν′Tµ

′ν′
= ην′µ′Tµ

′ν′
(7)

and thus
T ′
ν
ν = T νν (8)

which means that the trace is invariant as expected for contracted indices.
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0.4 E4

In the limit of very small velocity v, we find that x′ = x− vt+O(v2) which
means that O’ is moving with a velocity v with respect to O in the x direction.

We rewrite the Lorentz transformation in a vectorial form
t′ = t+ (γ − 1)(t− vx)− vx
x′ = x+ (γ − 1)x− γvt
y′ = y

z′ = z

(9)

We use the fact that for this particular transformation : x = (~r.~v)~v/~v 2 and ~v
is colinear with ~r. This yields :

⇒


t′ = t+ (γ − 1)(t− ~v.~r)− ~v.~r

~x ′ = ~r +
(γ − 1)

~v 2
(~r.~v)~v − γt~v

(10)

The important point is that rotation invariance implies that the Lorentz boost
we consider is completely general, it is our choice of axis which is not. Therefore,
once we have been able to rewrite our relation in a manifestly rotation invariant
way, what we have found in a particular frame is valid in all frames. We conclude
that (10) is the general expression of a Lorentz boost whatever the vector ~v is.
Notice that it would have been rather difficult to derive this relation directly.
This is one example of the power of tensor calculus.

0.5 E5

The choice of matrices representing SA is solely constrained by the multipli-
cation table of C3v. Once we have a set of matrices for the rotations and mirror
symmetries that reproduce the multiplication table of C3v, this is a represen-
tation. We know that S2

A is the identity is this is the only constraint that the
matrix representing SA should staisfy and it is satisfied by(

1 0

0 −1

)
. (11)

Thus, this is a possible choice of matrix for SA. The other matrices representing
SB and SC follows from the choice of matrices representing the rotations and the
fact that SB and SC can be obtained by composition of SA with the rotations.
For instance : SB = SA.R2π/3. Thus, if we take for the matrix representing SB
the product of the matrices representing SA and R2π/3, we obviously preserve
the multiplication table of C3v and we therefore obtain a representation.

With the choice (11) for the matrix representing SA, we find that the coor-
dinates (x, y) of a vector in the ABC plane are transformed under SA by

x′ = x

y′ = −y.
(12)
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The choice of axis where this is satisfied obviously corresponds to the x-axis
along the OA direction (O being the center of the triangle) and the y-axis
perpendicular to the x-axis.

0.6 E6

Ji = −iεijk|j〉〈k | (13)

implies that
J1 = −iε1jk|j〉〈k |

= −i(ε123|2〉〈3 |+ ε132|3〉〈2 |)
= −i(|2〉〈3 | − |3〉〈2 |)

(14)

and thus
J1(x|1〉+ y|2〉+ z|3〉) = i(y|3〉 − z|2〉). (15)

and thus

J1 =

 0 0 0
0 0 −i
0 i 0

 (16)

which is indeed the generator of SO(3) in the x̂ direction. We now check the Lie
algebra.

JiJj = −(εikl|k〉〈l |)(εjmn|m〉〈n |)
= −εiklεjmn|k〉〈l |m〉〈n |
= −εiklεjln|k〉〈n |
= εiklεjnl|k〉〈n |
= (δijδkn + δinδkj)|k〉〈n |
= δij |k〉〈k |+ |j〉〈i |.

(17)

Thus, we find
[Ji, Jj ] = |j〉〈i | − |i〉〈j |. (18)

For instance :
[J1, J2] = |2〉〈1 | − |1〉〈2 |

= iJ3

= iε123J3

= iε12kJk.

(19)

This is trivially generalized to the other indices and thus the Lie algebra of
SO(3) is satisfied as expected.

0.7 E7

See the notes (in french) “Un soupçon de théorie des groupes”.
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0.8 E8

In a particular frame

εαβ =

(
0 1
−1 0

)
. (20)

In a rotated frame, we obtain by definition of a tensor :

ε′αβ = UαγUβδεγδ

= Uαγεγδ
(
tU
)
δβ
.

(21)

from a matrix point of view, this means that

ε′ = UεtU. (22)

Taking the general parametrization of a SU(2) matrix

U =

(
a −b̄
b ā

)
(23)

with |a|2 + |b|2 = 1, we easily find that ε′αβ = εαβ . Thus ε is an invariant tensor.

(ii) The Lorentz matrices are defined by

ηµνΛµµ′Λνν′ = ηµ′ν′ . (24)

and (
Λ−1

)µ
µ′ = Λµ′

µ (25)

where, by definition, the indices in Λµ′
µ have been raised and lowered from Λµν

with the metric. By considering the metric as a (covariant) tensor and using
Eq.(24), we find :

η′µν = Λµ
µ′

Λν
ν′
ηµ′ν′

= Λµ
µ′

Λν
ν′
ηµ′′ν′′Λµ

′′

µ′Λν
′′

ν′

= ηµν .

(26)

Thus, η is an invariant tensor. This is actually the meaning of the conserva-
tion of the distance ds2 under Lorentz transformation because when we set :
ηµνdx

µdxν = ηµνdx
′µdx′

ν
we already state that the metric is invariant under a

Lorentz transformation and since we assume that ds2 is scalar, ηµν must be a
tensor. Therefore, it must be an invariant tensor which is the property we have
checked above.

(iii) Z = spinor ⇒ Z ′α = UαβZβ . Thus

(Z†Z)′ = Z†U†UZ = Z†Z (27)

and thus, Z†Z is a scalar.

(Z†σiZ)′ = Z†U†σiUZ = RijZ
†σjZ (28)

and thus, Z†~σZ is a vector.

4



0.9 E9

(i) It is easy to check that N†.N =I and thus N is a unitary matrix. A simple
calculation shows that the diagonal matrix J3

d reads :

J3
d = NJ3N

−1 =

 −1 0 0
0 1 0
0 0 0

 . (29)

The three eigenvalues are therefore −1, 0, 1 and we recognize the three eigenva-
lues of Jz for a spin 1.

(ii) We call J3 the operator represented by J3 in the cartesian basis {~ei} and

by J3
d in the diagonal basis {~eid}. We call P the matrix such that : ~ei

d = Pij~ej .
We thus have :

J3~ei = (J3)ij ~ej
J3~eid = (J3

d)ij~ej
d = λi~ei

d (30)

with λi the eigenvalue associated with ~ei
d. We obtain :

J3Pij~ej = Pij (J3)jk ~ek = (J3
d)ijPjk~ek (31)

and thus J3
d = P J3 P−1 ⇒ P = N . We thus conclude that for a vector

~V = Vi~ei = V−~e1
d + V+~e2

d + V0~e3
d :

V− = −(V1 − iV2)/
√

2

V+ = (V1 + iV2)/
√

2
V0 = V3

(32)

(iii) A simple calculation shows that ~J 2 = 2I. In the language of quantum
mechanics we say that we are dealing with the spin one representation of the
rotation group : j = 1, that ~J 2 = j(j + 1) I and that the basis vector are |j,m〉
with m = −1, 0, 1.

(iv) For SU(2), we find ~σ2/4 = 3/4 I and thus j = 1/2 ⇒ it is the spin 1/2
representation.

0.10 E10

(i) T is a tensor ⇒ T ′ij = RikRjlTkl. Thus

T ′ii = RikRilTkl = (tRR)klTkl = Tkk. (33)

and thus TrT is a scalar. It spans the (irreducible) scalar representation of
SO(3).

If T = ~x⊗ ~y ⇒ Tij = xiyj , then TrT = ~x · ~y.

(ii)

A′ij = (RikRjlTkl −RjkRilTkl)/2 = RikRjl(Tkl − Tlk)/2 = RikRjlAkl (34)
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and thus A is a tensor ⇒ it spans a representation of SO(3).

(iii)
Vi = εijkAjk = εijk (Ajk + (Tjk + Tkj)/2) = εijkTjk (35)

where the second equality comes from the fact that εijk(Tjk + Tkj) = 0, see
exercice 1.

Under infinitesimal rotations we get :

V ′i = εijk (δja + εjalδθl) (δkb + εkblδθl)Tab
= εiab + (εiakεkbl + εijbεjal) δθlTab
= Vi + (δibδal − δiaδbl)δθlTab
= Vi − εilkεabkδθlTab
= Vi − εilkδθlVk.

(36)

Thus ~V transforms as a vector and A spans therefore the (irreducible) vector
representation of SO(3).

(iv) If T = ~x⊗ ~y ⇒ ~V = ~x∧ ~y. It shows that ~V is a pseudo-vector, that is,
is a vector for SO(3) but is invariant under the inversion : ~x→ −~x and ~y → −~y
contrarily to a true vector.

(v) TrS =TrT which implies that

Sij =
1

2
(Tij + Tji)−

1

3
δijTrT (37)

is symmetric and traceless. As any 3 × 3 symmetric matrix, it involves 6 inde-
pendent degrees of freedom.

(vi) We know that the trace of a tensor is invariant under SO(3). Thus, S ′
is also traceless. Let us show that it is symmetric.

(Tij + Tji)
′ = RikRjlTkl +RjkRilTkl

= RikRjlTkl +RjlRikTlk
= RikRjl(Tkl + Tlk)

(38)

and thus
S ′ij = RikRjlSkl. (39)

We conclude that both S and S span a representation of SO(3).

(vii) We trivially have s1 = S11 − S33, s2 = S12, s3 = S13, s4 = S22 − S33,
s5 = S23. There are five components in s and five undependent degrees of
freedom in S. Since all components of s involve either diagonal components of
S or components in its upper right part and since none of them is redundant,
we conclude that all components of s are independent.
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(viii) Since S is a tensor we get in an infinitesimal rotation around x̂ :

S′ij = Sij + iδθ(−i) (δikε1jl + δjlε1ik)
S′11 = S11

S′12 = S12 + iδθ(−i)S13

S′13 = S13 + iδθ(−i) (−S12)
S′22 = S22 + iδθ(−i) (2S23)
S′23 = S23 + iδθ(−i) (−S22 + S33)
S′33 = S33 + iδθ(−i) (−2S23)

(40)

We thus find

J1 = −i


0 0 0 0 2
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 4
0 0 0 −1 0

 . (41)

Similar calculations for rotations around ŷ and ẑ yield :

J2 = −i


0 0 −4 0 0
0 0 0 0 −1
1 −1 0 0 0
0 0 −2 0 0
0 1 0 0 0

 (42)

and

J3 = −i


0 2 −4 0 0
−1 0 0 1 0
1 0 0 0 1
0 −2 0 0 0
0 1 −1 0 0

 . (43)

Notice that these generators are not hermitic. By an equivalence we could make
them hermitic.

(ix) The Lie algebra of SO(3) is trivially reproduced and we find that

~J 2 = 6 I. (44)

We thus conclude that this representation corresponds to j = 2 : it is the “spin
2” (irreducible) representation of SO(3).

(x) If T = ~x⊗ ~y, we conclude that

• ~A · ~B is a scalar (spin 0) ;

• ~A ∧ ~B is a (pseudo-)vector (spin 1) ;

• 1

2
(AiBj +AjBi)−

1

3
δij( ~A · ~B) is a spin 2 tensor.

Notice that a general tensor Tij involves nine degrees of freedom and we
retrieve them in the scalar (1), vector (3) and spin-2 tensor (5) irreducible
representations.

7



0.11 E11

(i) A basis in C2 ⊗ C2 is {|α〉 ⊗ |β〉}, that is, {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}.

(ii) For the tensor product, we get W = Y ⊗Z = Wαβ |α〉⊗|β〉 = YαZβ |α〉⊗
|β〉. It involves 2×2 complex degrees of freedom, that is 8 real degrees of freedom.
Under an SU(2) infinitesimal transformation, Wαβ transforms as :

W ′αβ =
[
eid

~θ·~σ/2
]
αγ

[
eid

~θ·~σ/2
]
βρ
Wγρ. (45)

The SU(2) transformation is thus given on Wαβ by

eid
~θ·~σ/2 ⊗ eid~θ·~σ/2 = I⊗ I = id~θ ·

(
~σ

2
⊗ I + I⊗ ~σ

2

)
(46)

and the generators are therefore :

Ji =
σi
2
⊗ I + I⊗ σi

2
. (47)

(iii) In the {| ↑〉, | ↓〉} basis :

σ1| ↑〉 = | ↓〉, σ1| ↓〉 = | ↑〉
σ2| ↑〉 = i| ↓〉, σ2| ↓〉 = −i| ↑〉
σ3| ↑〉 = | ↑〉, σ3| ↓〉 = −| ↓〉.

(48)

thus
~J 2| ↑↓〉 = | ↑↓〉+ | ↓↑〉
~J 2| ↓↑〉 = | ↑↓〉+ | ↓↑〉

(49)

and ~J 2 is therefore not diagonal in the basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}. It is trivial
to find the diagonal basis since

~J 2 (| ↑↓〉 − | ↓↑〉) = 0
~J 2 (| ↑↓〉+ | ↓↑〉) = 2 (| ↑↓〉+ | ↓↑〉) .

(50)

Moreover
~J 2| ↑↑〉 = 2| ↑↑〉
~J 2| ↓↓〉 = 2| ↓↓〉.

(51)

The four (complex) dimensional space can therefore be splitted into two parts

according to the eigenvalues of ~J 2 :

• a three-dimensional space spanned by {| ↑↑〉, |↑↓〉+|↓↑〉√
2

, | ↓↓〉} where ~J 2 = 2 I,

• a one-dimensional space (orthogonal to the 3D space) spanned by |↑↓〉−|↓↑〉√
2

where ~J 2 = 0.
In these spaces, it is trivial to check that J3 is diagonal and that its eigen-

values are 1, 0,−1 in the 3d space and 0 in the 1d space. These two spaces are
of course respectively the Hilbert space for a spin one and the Hilbert space for
a spin 0. The basis vectors are often denoted {|1, 1〉, |1, 0〉, |1,−1〉} and |0, 0〉.
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(iv) On the spherical basis (this is its name) :

W = Y1Z1| ↑↑〉+ Y2Z2| ↓↓〉+
1√
2

(Y1Z2 + Y2Z1)
| ↑↓〉+ | ↓↑〉√

2

+
1√
2

(Y1Z2 − Y2Z1)
| ↑↓〉 − | ↓↑〉√

2
.

(52)

The spin 0 part, that is, the antisymmetric part is of course proportional to
εαβ : YαZβ − YβZα = (Y2Z1 − Y1Z2)εαβ .

0.12 E12

(i) Jαβ is an antisymmetric tensor of generators of the Lorentz group (each

non vanishing component Jαβ is a generator) in much the same way as ~J is a
vector of generators of SO(3). Being antisymmetric and since the indices run on
4 values it has 3 + 2 + 1 = 6 independent non vanishing components.

(ii) We of course define Jαβ from Jαβ by manipulating its indices with the
metric ηµν . Then,

(
Jαβ

)µ
ν

is the matrix element µν of the generator Jαβ : It is
a number. Let’s plug

(Jαβ)
µ
ν = i

(
δµαηνβ − δ

µ
βηνα

)
(53)

into the right hand side of

Λµν = δµν −
1

2
iεαβ(Jαβ)

µ
ν . (54)

We obtain :

Λµν = δµν − 1
2 iε

αβi
(
δµαηνβ − δ

µ
βηνα

)
= δµν + εµν .

(55)

This is indeed what we obtain when performing infinitesimal Lorentz transfor-
mations. It shows a posteriori that the expression in Eq.(53) is the right one.

From Eq.(53) we obtain that the only nonvanishing matrix elements of J01
are for µ = 0, ν = 1 with (J01)

0
1 = −i and µ = 1, ν = 0 with (J01)

1
0 = −i. A

direct comparison with the matrix elements of K1 shows that the two matrices
are proportional and that J01 = −iK1. The same holds true for all J0i.

For Jij , we obtain as the only nonvanishing matrix elements are :

(Jij)
i
j = −i and (Jij)

j
i = i. Here again a direct comparison with the ma-

trices Ji shows the result.

(iii) The tedious way consists in evaluating the left and right hand sides of
the Lie algebra with Eq.(53) and showing that they are the same :

[Jµν , Jρσ]αβ = i (ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ)αβ . (56)
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A more clever way consists in realizing (i) that the right hand side of the Lie
algebra is linear in the generators, (ii) must be antisymmetric in (µ, ν), in (ρ, σ)
and in the exchange (µ, ν) ↔ (ρ, σ) and (iii) can involve only ηµν , Jµν and
εµνρσ which is the totally antisymmetric tensor. Actually, εµνρσ cannot appear
because of parity reasons. Then, since the right-hand side is linear in Jµν , it
must also be linear in ηµν .

We start for instance from ηνρJµσ and by exchanging µ and ν we generate
−ηµρJνσ. Then, from these two terms, we generate two new ones by exchanging
ρ and σ that are the last two terms in Eq.(56). We then check that the result is
automatically antisymmetric in the exchange : (µ, ν) ↔ (ρ, σ). The only thing
to determine is now the overall normalization. We consider :
[J01, J02] = −[K1,K2] = −iJ3 = −αη00J12 = −αJ3
which implies that α = i.

(iv) We compute the matrix elements of i (|µ〉〈ν | − |ν〉〈µ |) :

i〈ρ | (|µ〉〈ν | − |ν〉〈µ |) |σ〉 = i (ηρµηνσ − ηρνηµσ) (57)

which is indeed identical to Eq.(53) in covariant coordinates :
(Jµν)ρσ = i (ηρµηνσ − ηρνηµσ) .
The Lie algebra is then simple to reproduce from :

JµνJρσ = − (|µ〉〈ν | − |ν〉〈µ |) (|ρ〉〈σ | − |σ〉〈ρ |)
= −ηνρ|µ〉〈σ |+ ηνσ|µ〉〈ρ |+ ηµρ|ν〉〈σ | − ηµσ|ν〉〈ρ |.

(58)

0.13 E13

(i) The eigenvalues of M are −1,−1 (twice degenerate). If M can be diago-
nalized then there is a matrix P such that

PMP−1 = −I. (59)

But then by multiplying the previous equation by P−1 on the left and P on the
right, we find that M is −I. Thus, M cannot be diagonalized.

(ii) If m ∈ sl(2,C) then m = ~α ·~σ with αi ∈ C. Then, Tr m = 0. We conclude
that

m =

(
k a
b −k

)
. (60)

This matrix has two different eigenvalues and is diagonalizable. Then its expo-
nential is diagonalizable which contradicts (i).

Another proof consists in showing that m2 is proportional to the identity, to
resum the series of exp(m) and to show that it cannot be M .

0.14 E14

(i) For a boost in the x̂ direction :

(χ†LψL)′ = χ†LM
†
1M1ψL

= χ†Le
dφσ1ψL

= χ†LψL + dφχ†Lσ1ψL.

(61)

10



For the space components :

(χ†LσiψL)′ = χ†Le
dφ

σ1
2 σie

dφ
σ1
2 ψL

= χ†L

(
I + dφ

σ1
2

)
σi

(
I + dφ

σ1
2

)
ψL

= χ†LσiψL + dφ δi1 χ
†
LψL.

(62)

In matrix form, this is :
χ†LψL
χ†Lσ1ψL
χ†Lσ2ψL
χ†Lσ3ψL


′

=


1 dφ
dφ 1

1
1




χ†LψL
χ†Lσ1ψL
χ†Lσ2ψL
χ†Lσ3ψL

 (63)

This is nothing but the transformations of the covariant coordinates of a 4-
vector. Of course, this can be done with the other Lorentz boosts and with si-
milar results. Thus, (χ†LψL, χ

†
LσiψL) are the covariant coordinates of a 4-vector.

(ii) For (χ†RψR, χ
†
RσiψR) the same kind of calculations would lead to the

conclusion that they are the contravariant coordinates of a 4-vector.

(iii) Since under parity : χL ↔ χR and since both (χ†RψR, χ
†
RσiψR) and

(χ†LψL,−χ
†
LσiψL) are contravariant coordinates of two 4-vectors we find that :

a. (χ†LψL + χ†RψR,−χ
†
LσiψL + χ†RσiψR) is a true 4-vector because its time

component does not change sign under parity while its space components do ;
b. (χ†LψL−χ

†
RψR,−χ

†
LσiψL−χ

†
RσiψR) is a pseudo 4-vector because its time

component changes sign under parity while its space components do not.

(iv) The above 4-vectors can be conveniently rewritten in a manifestly cova-
riant way with the set of γµ matrices :

χ̄γ0ψ = χ†γ0γ0ψ

=
(
χ†L, χ

†
R

)( I2
I2

)(
I2

I2

)(
ψL
ψR

)
= χ†LψL + χ†RψR

(64)

and
χ̄γiψ = χ†γ0γiψ

=
(
χ†L, χ

†
R

)(
I2

I2

)(
σi

−σi

)(
ψL
ψR

)
= −χ†LσiψL + χ†RσiψR.

(65)

These are the contra-variant coordinates of the true 4-vector of question (iii).
For the pseudo-vector :

χ̄γ0γ5ψ = χ†γ5ψ

=
(
χ†L, χ

†
R

)(
I2
−I2

)(
ψL
ψR

)
= χ†LψL − χ

†
RψR

(66)
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and

χ̄γiγ5ψ = χ†γ0γiγ5ψ

=
(
χ†L, χ

†
R

)(
I2

I2

)(
σi

−σi

)(
I2
−I2

)(
ψL
ψR

)
= −χ†LσiψL − χ

†
RσiψR.

(67)

These are the contra-variant coordinates of the pseudo 4-vector of question (iii).

0.15 E15

For an infinitesimal Lorentz transformation we obtain :(
χL
χR

)′
=

I2 + i

 (
d~θ − id~φ

)
.~σ/2 0

0
(
d~θ + id~φ

)
.~σ/2

( χL
χR

)
(68)

(ii) For a rotation around x̂ :

χ′ =

[
I4 +

i

2
dθ1

(
σ1

σ1

)]
χ. (69)

Because ε32 = dθ1, we can rewrite this expression in terms of commutators :

i

2
ε32

(
σ1

σ1

)
=

1

4
ε32

(
[σ2, σ3]

[σ2, σ3]

)
. (70)

Since

γ2γ3 = −
(
σ2σ3

σ2σ3

)
(71)

we find :

i

2
dθ1

(
σ1

σ1

)
=

1

4
ε32[γ3, γ2] =

1

8

(
ε32[γ3, γ2] + ε23[γ2, γ3]

)
. (72)

For this particular transformation, all other components of εµν vanish and thus

χ′ =

(
I4 +

1

8
εµν [γµ, γν ]

)
χ. (73)

Since this equation is written in a covariant form, it is valid in any frame and
thus it holds for any Lorentz transformation. This is the general infinitesimal
transformation of a Dirac bi-spinor. We thus find that the generators of the
Lorentz group acting on Dirac bi-spinors can be written : σµν/2 = i

4 [γµ, γν ].
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0.16 E16

(i) Under a translation, x′µ = xµ+aµ. Notice that this means that the frame
with coordiantes x′µ is translated by aµ since its origin corresponds to x′µ = 0
and thus xµ = −aµ. For a rotation, x′i = Rijxj with R ∈ SO(3) and for a
Lorentz transformation : x′µ = Λµ

νxν with Λ ∈ SO(3,1).

(ii) For a translation and in the active point of view “the new field at the
new point is the same as the old field at the old point”. In the passive point of
view, this means that f(xµ) = f ′(x′µ) whatever the tensor nature of f .

• For rotations and in the active point of view “the new field at the new
point is rotated with respect to the old field at the old point”. Denoting x for
(x1, x2, x3), we have :
- for a scalar (under SO(3)) field : f ′(x′) = f(x),
- for a spinor field : f ′α(x′) = Uαβfβ(x) with U ∈ SU(2),
- for a vector field f ′i(x

′) = Rijfj(x),
- for a tensor field f ′i1i2···in(x′) = Ri1j1Ri2j2 · · ·Rinjnfj1j2···jn(x)

where x′i = Rij(~θ )xj and U = U(~θ) = exp
(
i~θ.~σ/2

)
.

• The same kind of relations exist for Lorentz transformations where now x
means (x0, x1, x2, x3) :
- for a scalar (under SO(3,1)) field : f ′(x′) = f(x),
- for a Dirac spinor field : f ′α(x′) = S(Λ)αβfβ(x),
- for a 4-vector field f ′µ(x′) = Λµ

νfν(x),
- for a tensor field f ′µ1µ2···µn(x′) = Λµ1

ν1Λµ2

ν2 · · ·Λµn
νnfν1ν2···νn(x).

where x′µ = Λµ
νxν and for infinitesimal transformations where Λµ

ν = δµ
ν + εµ

ν

with εµν antisymmetric, S(Λ) = S(ε) = I4 − i
4εµνσ

µν and σµν = i
2 [γµ, γν ] (see

exercice E15).

(iii) We can now find the generators acting on classical fields :
• For a translation :

f(x) = f ′(x′)
= f ′(x+ a)
= f ′(x) + daµ∂νf

′(x) +O(da2)
= f ′(x) + daµ∂µf(x) +O(da2).

(74)

Thus
δf = −daµ∂µf = idaµ(i∂µf) = idaµPµf with Pµ = i∂µ . (75)

Notice that if we call P i the coordinates of ~P and ∂i = ∂
∂xi the coordinates of

~5, we find that ~P = −i~5.

• For an infinitesimal rotation around ẑ and for a scalar field :

f(x) = f ′(x′)
= f ′(R.x)
= f ′(x+ dθy, y − dθx, z) +O(dθ2)
= f ′(x) + dθ (y∂x − x∂y) f(x) +O(dθ2) .

(76)

13



We thus find

δf = dθ (x∂y − y∂x) f = dθ3 (x1∂2 − x2∂1) f = dθiεijkxj∂kf (77)

where the last equality comes from the fact that for this particular rotation
dθ1 = dθ2 = 0. The last equality being written in a covariant (for SO(3)) form
is actually valid for any rotation. We introduce the generators Li of the rotations
(more precisely, the representation of the generators of SO(3) acting on scalar
fields) :

Li = −iεijkxj∂k ⇒ ~L = −i~x ∧ ~5 = ~x ∧ ~P (78)

and we therefore have :
δf = id~θ · ~L. (79)

The Lie algebra of SO(3) is of course retrieved for the Li’s. From :

LiLjf(x) = −εimnxm∂n (εjpqxp∂qf(x))
= −εimnεjpqxm (δnp∂qf(x) + xp∂n∂qf(x))
= εimnεjqnxm∂qf(x)− εimnεjpqxmxp∂n∂qf(x)
= (δijδmq − δiqδmj)xm∂qf(x)− εimnεjpqxmxp∂n∂qf(x)

= δij (~x · ~5)f(x)− xj∂if(x)− εimnεjpqxmxp∂n∂qf(x)

(80)

we find :
[Li, Lj ]f(x) = −(xj∂i − xi∂j)f(x)

= − (δjlδim − δilδjm)xl∂mf(x)
= εijkεlmkxl∂mf(x)
= iεijkLkf(x).

(81)

Since this holds true for all functions f we obtain : [Li, Lj ] = iεijkLk which is
the Lie algebra of the SO(3) group.

• For an infinitesimal rotation around ẑ and for a vector field :

fi(x) =
(
R−1

)
ij
f ′j(x

′)

= (I3 − idθSz)ij
(
f ′j(x) + dθ (y∂x − x∂y) fj(x)

)
= f ′i(x)− idθ [(Sz)ij + i (y∂x − x∂y) δij ] fj(x) +O(dθ2) .

(82)

where the Si’s are the three 3 × 3 matrix generators of SO(3) in the vector
representation and previously denoted Ji when we did not consider fields, that
is, when the orbital part of the generator – the Li’s – is absent. We thus obtain :

δfi(x) = idθ [(Sz)ij + i (y∂x − x∂y) δij ] fj(x). (83)

The generators of the rotation group acting on vector fields are therefore :

Ji = Li + Si. (84)

They are made of an orbital part and a “spin” part, the orbital part taking care
of the change of coordinates of the point where the field is computed and the

14



“spin” part being responsible for the rotaion of the field itself. Of course, this
latter part was absent for the scalar field.

• The generalization to spinor fields is now straightforward : the generators
of SO(3) acting on a spinor field Zα(x) are again of the form Ji = Li + Si
but where now the “spin” part is adapted to the spinor nature of the field
Si → σi/2. For a tensor field, it would proceed in the same way : the orbital
part of the generators would be the same as above and the “spin” part would
be the generators of SO(3) in the representation corresponding to the tensor
nature of the field.

Of course, here again, the commutator algebra of the Ji’s is the Lie algebra
of SO(3).

• For Lorentz transformations, we proceed in exactly the same way. We have
Λµ

ν = δµ
ν + εµ

ν . Thus, for a bf scalar field

δf = −1

2
i εµνi (xµ∂ν − xν∂µ) f. (85)

We define

Lµν = i (xµ∂ν − xν∂µ)⇒

 L0i = i(t∂i + xi∂t) = −iKi

Lij = i(xi∂j − xj∂i) = iεijkLk

(86)

where the Li’s have been defined above. The commutator algebra of the Lµν
can be obtained straightforwardly :

[Lµν , Lρσ] = i (ηνρLµσ − ηµρLνσ + ηµσLνρ − ηνσLµρ) . (87)

It is of course the Lie algebra of SO(3,1) as can be seen on exercice 12, Eq.(56).

• For Lorentz transformations on a 4-vector field, the calculation is com-
pletely similar to that for rotations : Instead of Eq.(82) we have now :

f ′µ ((δρ
τ + ερ

τ )xτ ) = (δµ
ν + εµ

ν) fν(x) (88)

and we of course find that the generators Jµν of the Lorentz group are made
of an orbital part which is Lµν and a “spin” part Sµν which is nothing but the
4× 4 matrix generators of SO(3,1) in the 4-vector representation.

• The generalization to Lorentz transformations on a Dirac spinor field is
straightforward and we again find that the generators are the sum of the orbital
part Lµν and of a “spin” part Sµν = σµν/2 with σµν = i/2[γµ, γν ], see Exercice
15.

• The full commutator algebra now involves also the commutators of the Pµ
and of Lµν . It is straightforward to show that :

[Pµ, Lρσ] = i (ηµρPσ − ηµσPρ) . (89)
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Of course, there is also : [Pµ, Pν ] = 0.

(iv) We choose to transform the expectation values of the fields (and of their
conjugate momentum) as their classical couterparts :

x′µ = Λµ
νxν + aµ ⇒ 〈φα(x′)〉′ = Sαβ(Λ)〈φβ(x)〉 (90)

where S(Λ) is the “spin” part of the Lorentz transformation and is therefore
adapted to the tensor or spinor nature of the field φα.

The choice is to transform the kets and not the operators. The kets are
transformed with the Wigner operators (that depend on the parameters Λµν of
the Lorentz transformations and on the parameters aµ of the translations) :

|ψ′〉 = U(Λ, a)|ψ〉 ⇒ 〈ψ′ |φα(x′)|ψ′〉 = Sαβ(Λ)〈ψ |φβ(x)|ψ〉 (91)

and we conclude that

U†(Λ, a)φα(x′)U(Λ, a) = Sαβ(Λ)φβ(x). (92)

(v) For translations, we have :
x′µ = xµ + aµ

|ψ′〉 = U(a)|ψ〉 with U(a) = eia
µPµ

(93)

where the last equality is a definition of the generators Pµ acting in the state
space. Expanding U(a) at first order we get :

(I− iaµPµ) (φ(x) + aµ∂µφ(x)) (I + iaµPµ) = φ(x) (94)

which implies
[Pµ, φ(x)] = −i∂µφ(x). (95)

For Lorentz transformations we have :
x′µ = (δνµ + εµ

ν)xν

Sαβ = δαβ + i
2εµν(Sµν)αβ

|ψ′〉 = U(ε)|ψ〉 with U(ε) = I− i
2εµνM

µν

(96)

where Sµν = 0 if φ(x) is a scalar field, Sµν = σµν/2 for a spinor field, ... and
the last equality is a definition of the generators Mµν acting in the state space.
The calculations are straightforward and we get :

[Mµν , φα(x)] =
(

(xµi∂ν − xνi∂µ)δαβ + (Sµν)αβ

)
φβ(x). (97)
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0.17 E17

We recall that the conserved charge for the translation invariant systems is :

PNoether
µ =

∫
d3x

(
Π∂µφ− Lδ0µ

)
. (98)

We now abbreviate PNoether
µ by PN

µ and δ(3)(~x− ~x ′) by δ~x,~x ′ .
We shall often use in the following :∫

dx f(x)δ′(x) = −
∫
dx f ′(x)δ(x) (99)

and
f(x′)δ(x− x′) = f(x)δ(x− x′). (100)

(i) We start by µ = i and since PNoether
µ is time-independent, we choose the

time in the right hand side of Eq.(98) to be identical to the time in φ(x). We
denote [A(x), B(x′)]= the equal-time commutator, that is, the commutator of
A(x) and B(x′) where x0 = x′0 :

[PN
i , φ(x)] =

[∫
d3x′Π(x′)∂′iφ(x′), φ(x)

]=
=

∫
d3x′

(
[Π(x′), φ(x)]= ∂′iφ(t, ~x ′) + Π(t, ~x ′)[∂′iφ(x′), φ(x)]=

)
=

∫
d3x′

(
[Π(x′), φ(x)]= ∂′iφ(t, ~x ′) + Π(t, ~x ′)∂′i[φ(x′), φ(x)]=

)
= −i

∫
d3x′δ~x,~x ′∂′iφ(t, ~x ′)

= −i ∂iφ(x)
(101)

which is what is expected for the generator of the translations in Fock space.

(ii) We now assume that the lagrangian (density) depends on ∂0φ only
through 1/2(∂0φ)2. Thus :

Π(x) =
∂L

∂(∂0φ(x))
= ∂0φ(x). (102)
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We also find that[
L(x′), φ(x)

]=
=
[
L
(
φ(x′), ∂0φ(t, ~x ′), ∂′iφ(t, ~x ′)

)
, φ(x)

]=
=

[
1

2
(∂0φ(t, ~x ′))2, φ(x)

]=

=
1

2
([∂0φ(t, ~x ′), φ(x)]∂0φ(t, ~x ′) + ∂0φ(t, ~x ′)[∂0φ(t, ~x ′), φ(x)])

=
1

2
([Π(t, ~x ′), φ(x)]∂0φ(t, ~x ′) + ∂0φ(t, ~x ′)[Π(t, ~x ′), φ(x)])

= −iδ~x,~x ′∂0φ(t, ~x ′)
(103)

We consider now the µ = 0 case :

[PN
0 , φ(x)] =

[∫
d3x′

(
Π(x′)∂0φ(t, ~x ′)− L(x′)

)
, φ(x)

]=

=

∫
d3x′

(
[Π(x′), φ(x)]= ∂0φ(t, ~x ′) + Π(t, ~x ′)[∂0φ(t, ~x ′), φ(x)]=

)
+ i∂0φ(x)

= −i ∂0φ(x)
(104)

which is again what is expected for the generator of the translations in time in
Fock space.

We conclude that the canonical equal-time commutation relations are suf-
ficient to make the Noether charges of translations become the generators of
translations on φ. In particular, the generator of the time translation, that is,
the Hamiltonian, is :

H = PNoether
0 =

∫
d3x (Π∂0φ− L) . (105)

(iii) We use induction. For n = 1, the equality is nothing but the equal-time
commutation relation.

We assume that the property holds true for n− 1 and then :

[φn(x),Π(x′)]= = φn−1(x)[φn−1(x),Π(x′)]=

+ [φ(x),Π(x′)]=φn−1(x)

= inφn−1(x)δ~x,~x ′ .

(106)

Any function that is expandable in a power series is a sum of monomials and
therefore the property follows trivially.

(iii) Let us check that PNoether
µ is also the generator of translation on Π(x).
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For µ = i :

[PN
i ,Π(x)] =

[∫
d3x′Π(x′)∂′iφ(x′),Π(x)

]=
=

∫
d3x′

(
[Π(x′),Π(x)]= ∂′iφ(t, ~x ′) + Π(t, ~x ′)[∂′iφ(x′),Π(x)]=

)
=

∫
d3x′Π(t, ~x ′)∂′i[φ(x′),Π(x)]=

= i

∫
d3x′Π(t, ~x ′)∂′iδ~x,~x ′

= −i
∫
d3x′δ~x,~x ′∂′iΠ(t, ~x ′)

= −i ∂iΠ(x)
(107)

For µ = 0, we have first to compute
[
L(x′),Π(x)

]=
.

[
L(x′),Π(x)

]=
=

[
1

2
∂′µφ(x′)∂µ′φ(x′)− V (φ(x′)),Π(x)

]=
=

1

2
∂′µφ(t, ~x ′)[∂µ′φ(x′),Π(x)

]=
+

1

2
[∂′µφ(x′),Π(x)

]=
∂µ′φ(t, ~x ′)

− [V (φ(x′)),Π(x)
]=

= i ∂iφ(x)∂iδ~x,~x ′ − iV ′(φ(x))δ~x,~x ′

(108)

We can now compute the commutator of PN
0 and Π :

[PN
0 ,Π(x)] =

[∫
d3x′

(
Π(x′)∂0φ(t, ~x ′)− L(x′)

)
,Π(x)

]=
= −

∫
d3x′ [L(x′),Π(x)]=

= −i
∫
d3x′

(
∂iφ(x)∂iδ~x,~x ′ − V ′(φ(x))δ~x,~x ′

)
= i
(
∂i∂

iφ(x) + V ′(φ(x))
)

= −i∂0∂0φ(x) + i
(
∂µ∂

µφ(x) + V ′(φ(x))
)

= −i∂0Π(x) + i
(
∂µ∂

µφ(x) + V ′(φ(x))
)

= −i∂0Π(x)

(109)

and the (Euler-Lagrange) equations of motion on φ, that is :

∂µ∂
µφ(x) + V ′(φ(x)) = 0. (110)

We conclude that for the fields satisfying the equations of motion, PN
µ is also the

generator of translations on Π(x). This means in particular that the Hamiltonian
can be defined either as the the quantity that generates the translations in
time or as the quantity that is conserved when the translations in time are
symmetries : these two quantities are one and the same.
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0.18 E18

(i) The conjugate momentum of ψα(x) is given by

Πα(x) =
∂L

∂(∂0ψα(x))
=
∂(iψ̄γµ∂µψ)

∂(∂0ψα(x))

= iψ̄αγ
0

= iψ†α(x)

(111)

(ii) The lagrangian must be a Lorentz scalar. Its (potential) part depends
only on ψ and ψ̄. The hermitic invariants that can be built with them are for
instance ψ̄ψ or (ψ̄γµψ)(ψ̄γµψ). Of course all powers of them are invariant. It is
possible to add several γ-matrices (the indices of which are contracted) as well
as γ5, if parity is not an issue.

(iii) We can redo all the calculations made in E17 with equal-time anti-
commutators instead of equal-time commutators.

In the following calculations, when the spinor indices are not explicitly writ-
ten, it is understood that there are summed over. For instance Π∂iψ means
Πβ∂iψβ .

We first start with µ = i :

[PN
i , ψα(x)] =

[∫
d3x′Π(x′)∂′iψ(x′), ψα(x)

]=
=

∫
d3x′

(
Π(t, ~x ′)∂′i{ψ(x′), ψα(x)}= − {Πβ(x′), ψα(x)}= ∂′iψβ(t, ~x ′)

)
= −i

∫
d3x′δ~x,~x ′∂′iψα(t, ~x ′)

= −i∂iψα(x)
(112)

which is the same result as above.
We now need to recompute the commutator between the lagrangian and the

field. We start by the kinetic part of the lagrangian : iψ̄ /∂ψ = iψ̄γµ∂µψ[
ψ̄α(x′)γµαβ∂

′
µψβ(x′), ψσ(x)

]=
= ψ̄α(t, ~x ′)γµαβ

{
∂′µψβ(x′), ψσ(x)

}=
− γµαβ

{
ψ̄α(x′), ψσ(x)

}=
∂′µψβ(t, ~x ′)

= −γµαβ
{
ψ†ρ(x

′), ψσ(x)
}=
γ0ρα∂

′
µψβ(t, ~x ′)

= iγµαβ
{

Πρ(x
′), ψσ(x)

}=
γ0ρα∂

′
µψβ(t, ~x ′)

= −γµαβγ
0
σαδ~x,~x ′∂′µψβ(t, ~x ′)

= −γ0σαδ~x,~x ′ /∂αβψβ(x).

= −δ~x,~x ′
(
γ0 /∂ψ(x)

)
σ
.

(113)
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Then, for a particular potential term (which is actually the mass term) :

[ψ̄(x′)ψ(x′), ψσ(x)]= = ψ̄β(t, ~x ′){ψβ(x′), ψσ(x)}= − {ψ̄β(x′), ψσ(x)}=ψβ(t, ~x ′)

= −{ψ†α(x′), ψσ(x)}=γ0αβψβ(t, ~x ′)

= −δ~x,~x ′
(
γ0ψ

)
σ

(x).

(114)

We notice that the two results above, Eqs.(113) and (114), can be rewritten as :[
A(x′), ψσ(x)

]=
= −δ~x,~x ′γ0σα

∂

∂ψ̄α(x)
A(x) (115)

with A = ψ̄γµ∂µψ and A = ψ̄ψ.
This relation can be trivially generalized :

- to any power of ψ̄(x′)ψ(x′) since :[(
ψ̄(x′)ψ(x′)

)n
, ψσ(x)

]=
=−

( (
γ0ψ

)
σ

(
ψ̄ψ
)n−1

+
(
ψ̄ψ
) (
γ0ψ

)
σ

(
ψ̄ψ
)n−2

+

· · ·+
(
ψ̄ψ
)n−1 (

γ0ψ
)
σ

)
δ~x,~x ′

= −δ~x,~x ′γ0σα
∂

∂ψ̄α(x)

(
ψ̄(x)ψ(x)

)n
(116)

- to ψ̄γµψ since :

[ψ̄(x′)γµψ(x′), ψσ(x)]= = −δ~x,~x ′
(
γ0γµψ(x)

)
σ
. (117)

- to
(
ψ̄γµψ

)(
ψ̄γµψ

)
since :[(

ψ̄γµψ
)(
ψ̄γµψ

)
(x′), ψσ(x)

]=
= −δ~x,~x ′γ0σα

{(
ψ̄γµψ

)(
γµψ

)
α

+
(
γµψ

)
α

(
ψ̄γµψ

)}
.

(118)
We conclude that [

L(x′), ψσ(x)
]=

= −δ~x,~x ′γ0σα
∂L(x)

∂ψ̄α(x)
(119)

We can now compute the commutator between PN
0 and ψ :

[PN
0 , ψσ(x)] =

[∫
d3x′ (Π(x′)∂′0ψ(x′)− L(x′)) , ψσ(x)

]=
= −

∫
d3x′{Πα(x′), ψσ(x)}= ∂0ψα(t, ~x ′) + γ0σα

∂L
∂ψ̄α(x)

= −i ∂0ψσ(x) + γ0σα

(
∂L

∂ψ̄α(x)
− ∂µ

(
∂L

∂(∂µψ̄α(x))

)) (120)

where the last term has been added because it is vanishing. We conclude that
for the fields that satisfy the equations of motion, PN

0 is the generator of time
translations for ψ(x).
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(iv) We redo the calculations above for Π. For µ = i :

[PN
i ,Πσ(x)] =

[∫
d3x′Π(x′)∂′iψ(x′),Πσ(x)

]=
=

∫
d3x′Πα(t, ~x ′)∂′i{ψα(x′),Πσ(x)}=

= i

∫
d3x′Πσ(t, ~x ′)∂′iδ~x,~x ′

= −i ∂iΠσ(x)

(121)

We now have to compute the commutator of L and Π. We start by[
iψ̄α(x′)γµαβ∂

′
µψβ(x′),Πσ(x)

]=
= iψ̄α(t, ~x ′)γµαβ∂

′
µ

{
ψβ(x′),Πσ(x)

}=
= −ψ̄α(t, ~x ′)γµασ∂

′
µδ~x,~x ′

= −ψ̄α(t, ~x ′)γiασ∂
′
iδ~x,~x ′

= δ~x,~x ′∂iψ̄α(x)γiασ

= δ~x,~x ′
(
∂µψ̄α(x)γµασ − ∂0ψ̄α(x)γ0ασ

)
= δ~x,~x ′

(
∂µψ̄α(x)γµασ − ∂0ψ†σ(x)

)
= iδ~x,~x ′∂0Π(x)− iδ~x,~x ′∂µ

(
∂L

∂(∂µψα(x))

)
(122)

Then,

[ψ̄(x′)ψ(x′),Πσ(x)]= = ψ̄β(t, ~x ′){ψβ(x′),Πσ(x)}=

= iδ~x,~x ′ ψ̄σ(x)

= iδ~x,~x ′
∂
(
ψ̄(x)ψ(x)

)
∂(ψσ(x))

.

(123)

As we did previously, we can generalize this calculation to all kinds of non-
derivative terms (Lorentz-invariant and hermitic) and we therefore find that :[
L(x′),Πσ(x)

]=
= iδ~x,~x ′∂0Πσ(x) + iδ~x,~x ′

(
∂L

∂ψσ(x)
− ∂µ

(
∂L

∂(∂µψσ(x))

))
(124)

We can now compute the commutator of PN
0 and Π :

[PN
0 ,Πσ(x)] =

[∫
d3x′

(
Π(x′)∂′0ψ(x′)− L(x′)

)
,Πσ(x)

]=
=

∫
d3x′

(
Πα(t, ~x ′)∂′0{ψα(x′),Πσ(x)}= −

[
L(x′),Πσ(x)

]=)
= −i ∂0Πσ(x)− i

(
∂L

∂ψσ(x)
− ∂µ

(
∂L

∂(∂µψσ(x))

))
= −i ∂0Πσ(x)

(125)
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where, in the last line, we used the equations of motion. We conclude that for
the physical fields, PN

µ is the generator of translations for Pi.

0.19 E19

(i) By definition

/p = pµγ
µ = p0γ

0 + · · · p3γ3. (126)

It is therefore a 4× 4 matrix.

(ii) We use the Clifford algebra

{γµ, γν} = 2ηµνI. (127)

to rewrite /p
2 :

/p
2 = pµγ

µpνγ
ν

=
1

2
(pµγ

µpνγ
ν + pνγ

νpµγ
µ)

=
1

2
pµpν (γµγν + γνγµ)

= pµpνη
µνI

= p2I.

(128)

We again use the Clifford algebra :

γµγ
µ = ηµνγ

µγν

=
1

2
ηµν (γµγν + γνγµ)

= ηµνη
µνI

= 4 I

(129)

(iii) We use {γµ, γ5} = 0 and the fact that the trace is cyclic : Tr(AB) =Tr(BA) :
• Tr

(
γµγ5

)
:

Tr
(
γµγ5

)
= Tr

(
γ5γµ

)
= −Tr

(
γ5γµ

) (130)

and thus Tr
(
γµγ5

)
= 0.

• Tr (γµγν) :

Tr{γµ, γν} = 8ηµν

= 2 Tr (γµγν)
(131)

and thus
Tr (γµγν) = 4ηµν (132)
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• Tr (γµγνγα) :

Tr (γµγνγα) = Tr
(
γµγνγαγ5γ5

)
= −Tr

(
γµγνγ5γαγ5

)
= −Tr

(
γ5γµγνγαγ5

)
= −Tr

(
γµγνγαγ5γ5

)
= −Tr (γµγνγα) .

(133)

Thus, Tr (γµγνγα) = 0. This is actually true for the trace of any odd number
of γµ matrices.

• Tr
(
γµγνγαγβ

)
:

Tr
(
γµγνγαγβ

)
= −Tr

(
γµγνγβγα

)
+ 2ηαβTr (γµγν)

= Tr
(
γµγβγνγα

)
− 2ηνβTr (γµγα) + 2ηαβTr (γµγν)

= −Tr
(
γµγνγαγβ

)
+ 2ηµβTr (γνγα)− 2ηνβTr (γµγα)

+ 2ηαβTr (γµγν) .

(134)

We therefore obtain :

Tr
(
γµγνγαγβ

)
= ηµβTr (γνγα)− ηνβTr (γµγα) + ηαβTr (γµγν)

= 4ηµβηνα − 4ηνβηµα + 4ηαβηµν
(135)

A Remark : One can notice that the results above were expected since the
traces can only be functions of ηµν and εµναβ . For instance, there is no nonva-
nishing tensor of rank 3 that can be built with these two tensors and therefore
the trace of an odd number of γµ matrices must vanish.

As for Tr
(
γµγνγαγβ

)
, the only thing to check is that εµναβ does not appear

in the right hand side. Let us assume it does :

Tr
(
γµγνγαγβ

)
= λεµναβ + · · · (136)

where the dots represent the contribution which is not fully antisymmetric in
the indices µ, ν, α, β. Then,

εµναβTr
(
γµγνγαγβ

)
= λεµναβεµναβ = 4!λ (137)

It is now easy to prove that λ = 0 since :

εµναβTr
(
γµγνγαγβ

)
= −εµναβTr

(
γµγνγβγα

)
= −εµναβTr

(
γβγµγνγα

)
= −εµναβTr

(
γµγνγαγβ

)
.

(138)

Then, the tensor εµναβ cannot appear in the right hand side of the trace. Only
products of two tensor metric can appear :

Tr
(
γµγνγαγβ

)
= ληµβηνα + ρηνβηµα + σηαβηµν . (139)
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The trace must be symmetric under the simultaneous exchange of µ ↔ α and
ν ↔ β since Tr

(
γµγνγαγβ

)
= Tr

(
γαγβγµγν

)
which it automatically is accor-

ding to Eq.(139). It must also be invariant under the exchange µ → β, ν →
µ, α → ν, β → α because the trace is cyclic. This yields : λ = σ. Then, multi-
plying the trace by ηµνηαβ and ηµαηνβ we get a system of equations for λ and
ρ whose solution is λ = −ρ = 4.

(iv) For the trace of Tr
(
γ5γµγν

)
the only tensor we can have in the right

hand side is ηµν :
Tr
(
γ5γµγν

)
= ληµν . (140)

Multiplying both sides of this equation by ηµν yields λ = 0 and thus :

Tr
(
γ5γµγν

)
= 0. (141)

(v) We use the results of (iii) :

Tr(/p/k) = pµkνTr (γµγν) = 4p · k. (142)

Tr(/p/k/q) = pµkνqρTr (γµγνγρ) = 0. (143)

Tr(/p/k/p
′/k
′
) = pµkνp

′
αk
′
βTr

(
γµγνγαγβ

)
= 4pµkνp

′
αk
′
β

(
ηµβηνα − ηνβηµα + ηαβηµν

)
= 4(p · k′)(p′ · k)− 4(p · p′)(k · k′) + 4(p · k)(p′ · k′)

(144)

(vi) The Dirac equation reads :(
i/∂ −m

)
ψ = 0. (145)

Thus : (
i/∂ +m

) (
i/∂ −m

)
ψ = −

(
∂2 +m2

)
ψ = 0 (146)

which is the Klein-Gordon equation.
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