
1 Group theory and tensor calculus

1.1 E1

Aµν and Sµν are respectively antisymmetric and symmetric tensors : Aµν =
−Aνµ, Sµν = Sνµ. Show that AµνSµν = 0. Show that it follows that if Tµν

and T ′µν satisfy TµνAµν = T ′µνAµν for all antisymmetric tensor Aµν then Tµν
and T ′µν are not necessarily equal. What can we deduce on the symmetric and
antisymmetric parts of Tµν and T ′µν ?

1.2 E2

Show that ∂µ = ηµν∂µ and that it transforms as a covariant vector under
Lorentz transformations.

1.3 E3

Show that if Tµν is a tensor, its trace Tµµ is a scalar.

1.4 E4

The observer O is considered fixed and O’ moves with a velocity v in the x
direction. Its coordinates are related to those of O by

t′ = γ(t− vx)

x′ = γ(x− vt)
y′ = y

z′ = z

(1)

with γ = 1/
√

1− v2. By manipulating these equations, eliminate completely
v, x, y, z and rewrite them in terms of t and of the vectors ~r and ~v. What can
you deduce from the form of the transformations obtained ?

1.5 E5 : equivalent representations

We consider the C3v symmetry group of the equilateral triangle A, B, C. Is
it possible to represent the mirror symmetry SA about the axis going through
the point A by the matrix : (

1 0

0 −1

)
? (2)

To which basis in the ABC plane does this choice correspond to ? What are the
matrices that represent SB and SC in this case ? Check that together with the
rotation matrices, it is also a representation of C3v.
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1.6 E6

Using the bra and ket notation can sometimes yield a simple notation.
We consider a three-dimensional vector space and we call (|1〉, |2〉, |3〉) the

orthonormal basis vectors. Check that (with Einstein’s convention)

Ji = −iεijk|j〉〈k | (3)

are the generators of the SO(3) representation of the rotation group. With this
notation, check the Lie algabra of the rotation group.

1.7 E7 : homomorphism between SU(2) and SO(3)

We explicilty construct in the following the mapping between SU(2) and
SO(3) that also shows that SU(2) is not a representation of SO(3) while SO(3)
is a representation of SU(2).

1. We consider the setM of complex matrices M that are 2×2, hermitic and
traceless.

(i) How many real parameters do the matrices M depend on ?
(ii) Show that a general parametrization of M is

M =

(
z x− iy

x+ iy −z

)
(4)

with x, y, z real numbers. We denote ~x = (x, y, z). Conclude that M is isomor-
phic to R3.

2. Check that a basis of the four-dimensional complex vector space of 2× 2
matrices is σµ = (I2, σ1, σ2, σ3) with µ = 0, 1, 2, 3, I2 is the 2 × 2 unit matrix
and the σi’s are the Pauli matrices. How M = M(~x) can be decomposed on
the previous basis ? Rewrite this as a formal scalar product between ~x and
~σ = (σ1, σ2, σ3).

3. Show that :
1

2
Tr(σµσν) = δµν . (5)

Show that therefore the coordinates Nµ of a matrix N on the basis σµ can be
conveniently obtained from a trace. How would you call 1

2Tr(AB) where A and
B are two 2× 2 matrices ?

4. Compute the determinant of M(~x) in terms of ~x. How does this determi-
nant change when a rotation is performed on ~x ?

5. We now build the homomorphism between SU(2) and SO(3). It will map
a matrix U ∈ SU(2) to a matrix R in SO(3). We use the matrices M ∈ M to
this aim.

(i) Show that the mapping RU defined by

M →M ′ = RU (M) = UMU−1 (6)

preserves all the properties of M if U ∈ SU(2), that is, RU is a mapping from
M to M. How can we rewrite M ′ in terms ~σ and a vector ~x′ ?
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(ii) Conclude that we can consider RU as a mapping from R3 to R3 such
that ~x′ = RU (~x).

(iii) Compute the determinant of M ′. What can you conclude about RU
considered as a mapping from R3 to R3 ? Can it be a mirror symmetry ?

6. Compute (RU .RV )(M) and conclude that the mapping SU(2) → SO(3)

U → RU

(7)

is an homomorphism between the SU(2) and SO(3) groups, that is, SO(3) is a
representation of SU(2).

7. Compute the coordinates x′i of M ′ = UMU−1 in terms of σi and conclude
that the matrix elements of RU are given by :

(RU )ij =
1

2
Tr
(
σiUσjU

−1) . (8)

8. What is the inverse of the matrix −U ? Conclude from the previous equa-
tion that RU = R−U and that therefore the inverse mapping of Eq.(7) does not
exist.

9. We consider the rotation of axis ẑ and angle θ. How is it represented in
SO(3) ? Check explicitly that if we take

U(ẑ, θ) = eiθσz/2 (9)

for the SU(2) counterpart of this rotation, Eq.(8) is indeed satisfied. Conclude
that with a rotation of angle 2π is not associated the unit matrix in SU(2).

1.8 E8 : SU(2), spinors and invariant tensors

We call spinors the two-component complex objects that transform under a
rotation of parameters (~n, θ) by the SU(2) matrix U(~n, θ) = exp (iθ~n.~σ/2) (we
could have as well called them SU(2)-vectors or vectors for SU(2) but for histo-
rical reasons they have been called spinors). We also call multi-spinors the quan-
tities that transform under a rotation by T ′α1,··· ,αn

= Uα1,β1 · · ·Uαn,βnTβ1,··· ,βn

(they are also called SU(2)-tensors or tensors for SU(2)).
(i) Prove that the fully antisymmetric tensor εαβ defined in a particular

frame by εαβ = −εβα and ε12 = 1 is an invariant tensor for SU(2), that is, its
transformations under SU(2) preserve the numerical value of its matrix elements.

(ii) We define the metric ηµν as a tensor. Show that the definition of the
Lorentz matrices : ηµνΛµµ′Λνν′ = ηµ′ν′ implies that it is an invariant tensor for
the Lorentz group.

(iii) Show that if Zα is a spinor, then Z†Z is a scalar and Z†~σZ is a real
vector for SO(3). It will be useful to use the relation U−1σiU = Rijσj where
U ∈ SU(2) and R is the SO(3) matrix associated with U in the mapping from
SU(2) to SO(3) (see exercice 7).

3



1.9 E9 : Eigenvalues and eigenvectors of the SO(3) gene-
rators

We recall that

J3 =

 0 −i 0
i 0 0
0 0 0

 . (10)

(i) Compute the eigenvalues and eigenvectors of J3 and show that the transition
matrix to the diagonal basis is

N =

 −1/
√

2 −i/
√

2 0

1/
√

2 −i/
√

2 0
0 0 1

 . (11)

with NJ3N
−1 a diagonal matrix. What do these eigenvalues remind you ?

(ii) We consider a vector of cartesian coordinates (Vx, Vy, Vz). Find its coor-
dinates in the eigenbasis (notice that they are complex).

(iii) Compute ~J 2 = J2
1 + J2

2 + J2
3 . What does this remind you ? We call ~J 2

the Casimir operator of the rotation group.
(iv) We generically call Ji the generators of a representation of either SU(2)

or SO(3). The Ji are matrices of any dimension. For SU(2) : Ji = σi/2.

Compute ~J 2 = (σ1/2)2 + (σ2/2)2 + (σ3/2)2. What does it remind you ?

A remark : We could prove that for all representations of SU(2) of dimension
2j + 1 with j an integer (true representations of SO(3)) or half an integer
(representations of SU(2) that are not representations of SO(3)),

~J 2 = j(j + 1)I2j+1 (12)

where I2j+1 is the identity matrix of dimension 2j+ 1 and the eigenvalues of J3
are {−j,−j + 1, · · · , j − 1, j} that are either integers or half-integers.

1.10 E10 : tensor products in SO(3) and reducible repre-
sentations

We consider a tensor for SO(3) with two indices : Tij .
(i) Prove that the trace of T is a scalar for SO(3). Do you think legitimate

to say that this trace spans an irreducible representation of SO(3) ? If T was the
tensor product of two vectors ~x and ~y, what would be the trace of T in terms
of ~x and ~y ?

(ii) We consider the antisymmetric part of T : Aij = (Tij − Tji)/2. Show
that its transformation under SO(3) involves only A. Same question as above :
Do you think legitimate to say that A spans a representation of SO(3) ?

(iii) We define three quantities Vi by : Vi = εijkAjk. Show that Vi = εijkTjk.
Using infinitesimal transformations for convenience, show that Vi is a vector for
SO(3). The following relations will be useful :

εijkεilm = δjlδkm − δjmδkl. (13)
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and
δVi = V ′i − Vi = −( ~δθ ∧ ~V )i = −εijkδθjVk. (14)

Deduce that A spans the (irreducible) vector representation of SO(3).

(iv) When T is the tensor product of ~x and ~y, what is ~V ?
(v) We now define the symmetric part of T :

Sij =
1

2
(Tij + Tji). (15)

How should we modify the definition of S to make it traceless ? We call Sij this
quantity. How many degrees of freedom does S involve ?

(vi) Check that the components of S transform under SO(3) among them-
selves. Is it also true for S ? (same question : Do you think legitimate to say
that S and S spans a representation of SO(3) ?)

(vii) We define a 5-uplet by the following linear combinations of the Sij :
s1 = S11 − S33, s2 = S12, s3 = S13, s4 = S22 − S33, s5 = S23. Show that they
are independent linear combinations of components of S (they form a basis).

(viii) Find the matrices representing the generators Ji in the basis si. Are
they hermitic ? Comments ?

(ix) Check that the commutation relations of the Ji’s reproduce the Lie

algebra of the rotation group and compute ~J 2. What is the “spin” of this
representation ?

(x) Conclude about the tensor product of two vectors : What are the different
objects made out of the two vectors that span representations in this tensor
product ?

1.11 E11 : composition of two spins 1/2

We consider C2 which is the representation space for j = 1/2. We call {|α〉}
the eigenbasis of σz in this space which is also called in the literature :

{|α〉} = {|1
2
,

1

2
〉, |1

2
,−1

2
〉} = {|+〉, |−〉} = {| ↑〉, | ↓〉}. (16)

(i) Find a convenient basis of the tensor product C2 ⊗C2 in terms of {|α〉}.
(ii) We call Z a spinor and we write it as

Z = Zα|α〉 = Z1| ↑〉+ Z2| ↓〉. (17)

We consider the tensor product of two spinors Y and Z : W = Y ⊗ Z. How
many (complex) components does W have ? Determine the generators Ji of the
(representation of the) rotation group acting on Y ⊗ Z.

(iii) Show that J 2 is not diagonal in the basis {|α〉 ⊗ |β〉} and find the
diagonal basis. What are the eigenvalues of J 2 and of J3 ?

(iv) Find the components of W in the diagonal basis and show that the spin
0 part of Wαβ is proportional to the invariant tensor εαβ .
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1.12 E12 : Lie algebra of the Lorentz group

We define the generators of the Lie algebra of SO(3,1) by

Λ = I− 1

2
iεαβJ

αβ ⇒ Λµν = δµν −
1

2
iεαβ

(
Jαβ

)µ
ν

(18)

where εαβ is antisymmetric and involves the infinitesimal parameters of the
Lorentz transformations.

(i) How many independent Jαβ matrices exist ?
(ii) From what you know of the infinitesimal Lorentz transformations, show

that
(Jαβ)

µ
ν = i

(
δµαηνβ − δ

µ
βηνα

)
(19)

and that {
J0i = −iKi

Jij = εijkJk.
(20)

(iii) Show that the Jαβ satisfy the following Lie algebra :

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ + ηµσJνρ − ηνσJµρ) (21)

(iv) Retrieve this algebra by setting Jµν = i (|µ〉〈ν | − |ν〉〈µ |) with (of course)
〈µ | ν〉 = ηµν and check that the matrices Jµν defined this way are indeed the
generators of the Lorentz group.

1.13 E13 : About the range of the exponential in sl(2,C)

We want to show that the matrix

M =

(
−1 1

0 −1

)
(22)

that belongs to SL(2,C) cannot be obtained by exponentiating an element of
the Lie algebra of SL(2,C) (called sl(2,C)). A first possibility is to compute
exp(i~α·~σ) with αi complex numbers and show directly that it cannot be equal to
M whatever the αi’s. Another and more clever strategy consists in the following
steps :

(i) Compute the eigenvalues of M . Then, using a proof by contradiction,
assume that M can be diagonalized and find a contradiction.

(ii) Assume that there exists a matrix m ∈ sl(2,C) such that M = exp(m).
What is the trace of m ? Show that therefore m can be diagonalized and find a
contradiction. Conclude.

1.14 E14 : Dirac bi-spinors and gamma matrices

We consider four Weyl spinors : ψL, ψR, χL, χR.
(i) Using for simplicity the M1 and M2 matrices, compute the transformation

of χ†LψL under a Lorentz boost in the x̂ direction. Perform the same calculation
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for χ†L~σψL. Conclude that (χ†LψL, χ
†
L~σψL) are the covariant components of a

4-vector.
(ii) Perform the same calculations for (χ†RψR, χ

†
R~σψR) and conclude that

they are the contravariant components of a 4-vector.
(iii) From the 4-vectors above, find a true 4-vector and pseudo 4-vector.
(iv) We define :

γ0 =

(
I2

I2

)
(23)

and

γi =

(
σi

−σi

)
. (24)

Show that the true 4-vector found in (iii) is χ̄γµψ and the pseudo-vector χ̄γµγ5ψ
where ψ̄ = ψ†γ0 and ψ is the 4-component Dirac bi-spinor made out of ψL and
ψR.

1.15 E15 : Lorentz transformations of the Dirac bi-spinors

We define the matrix S of transformations of the bi-spinors by χ′ = S(Λ)χ
where Λ is a Lorentz matrix. For an infinitesimal transformation, we know that
Λµν = δµν + εµν with εµν = −ενµ. We thus define the generators σµν by :

S = S(ε) = I4 −
i

4
εµνσ

µν . (25)

with σµν = −σνµ. Each σµν is a 4 × 4 matrix with matrix elements [σµν ]αβ ,
α, β = 1, 2, 3, 4. This is similar to the generators of rotations Ji, each of which
being a 3× 3 matrix.

(i) For infinitesimal Lorentz transformations, rewrite the transformation of

the bi-spinor χ in terms of the rapidity d~φ and rotation (pseudo-)vector d~θ.
(ii) Our task is to rewrite this transformation in terms of σµν . Consider

the special case of an infinitesimal rotation around x̂ of angle dθ1. Rewrite the
transformation of χ in terms of the infinitesimal parameter ε32 (instead of dθ1)
and the commutator of σ2 and σ3. Finally, rewrite the transformation of χ in
terms of the commutator of γ2 and γ3.

(iii) For the particular rotation considered in (ii), rewrite the transformation
of χ in terms of εµν and σµν . Conclude about a general infinitesimal transfor-
mation of parameter εµν .

1.16 E16 : Translations and Lorentz transformations on
classical or quantum fields

We call xµ and x′
µ

the coordinates of the same event in Minskowski space
in two different frames (passive point of view) and f(x) and f ′(x′) (with x =
(x0, x1, x2, x3)) two (classical) fields representing the same physical quantity.

(i) How xµ and x′
µ

are related when the frames are translated, rotated or
Lorentz transformed ?
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(ii) Recall how f(x) and f ′(x′) are related when the frames are translated.
Same question for rotations and Lorentz transformations when f is a scalar,
spinor, vector or tensor field.

(iii) We call δf = f ′ − f the change of function when the transformations
considered above are infinitesimal. Find what δf is for translations, rotations
and Lorentz transformations in the case of a scalar, spinor or vector field. What
are the infinitesimal generators of these transformations (more precisely, the re-
presentation of these generators in the space of fields). What is the commutator
algebra of these generators ?

(iv) We now consider a quantum field φ(x). Recall how the translations and
Lorentz transformations act on the expectation values of φ and what this implies
on the Wigner operators representing the symmetries in the Fock space.

(v) We (abusively) give the same name to the generators of translations
and Lorentz transformations in the Fock space and to the generators acting
on classical fields : For instance, for infinitesimal translations, we expand the
Wigner operator of the translations at first order and call Pµ the generator.
Deduce from (iv) the commutator between Pµ and φ(x). Same question for
Lorentz transformations.
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2 Noether, Clifford, commutation relations

2.1 E17 : Noether charges and generators in the quantum
case : integer spins

We call PNoether
µ the Noether charge of translations. We shall check that the

canonical equal time commutation relations :

[φ(x), φ(x′)]= = [Π(x),Π(x′)]=0 and [φ(x),Π(x′)]= = iδ(3)(~x− ~x ′). (26)

imply that PNoether
µ is the generator of translations in the Fock space.

(i) For a general lagrangian, compute [PNoether
i , φ(x)] and conclude.

(ii) We consider a lagrangian where the only derivative term is 1/2 ∂µφ∂
µφ :

L =
1

2
∂µφ∂

µφ− V (φ(x)). (27)

Compute Π(x), the conjugate momentum of φ. Then, compute [PNoether
0 , φ(x)]

and conclude.
(iii) Show that

[φn(x),Π(x′)]= = inφn−1(x)δ(3)(~x− ~x ′) (28)

and conclude that for any function f of the field φ(x) that can be expanded in
a (convergent) series expansion :

[f(φ(x)),Π(x′)]= = if ′(φ(x))δ(3)(~x− ~x ′). (29)

(iv) Check that for fields satisfying the (Euler-Lagrange) equations of mo-
tion :

[PNoether
µ ,Π(x)] = −i ∂µΠ(x) (30)

What do you conclude about the Hamiltonian ?

2.2 E18 : Noether charges and generators in the quantum
case : half integer spins

We consider Dirac bi-spinors ψ and lagrangians L whose dependence on ∂µψ
is at most linear on ∂µψ, that is, is iψ̄γµ∂µψ.

(i) Find the conjugate momentum of ψα(x).
(ii) The part of the lagrangian L that does not depend on the derivatives

of the field, that is, that does neither depend on ∂µψ nor on ∂µψ̄ can a priori
involve terms depending on ψ and ψ̄. Find several examples of such terms (they
must be Lorentz invariant and hermitic).

(iii) We now assume that ψ and its conjugate momentum satisfy the cano-
nical equal-time anti-commutation relations :

{ψα(x),Πβ(y)}= = iδαβδ
(3)(~x− ~y)

{ψα(x), ψβ(x)(y)}= = {Πα(x),Πβ(x)(y)}= = 0.
(31)
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Compute [PNoether
µ , ψ(x)]. The following relation can be useful

[AB,C] = A{B,C} − {A,C}B. (32)

Conclude.
(iv) Redo the same calculation for [PNoether

µ ,Π(x)]. Conclude.

2.3 E19 : Clifford algebra, traces of products of γ matrices
and Dirac equation

We define /p = pµγ
µ.

(i) Is /p a number ? a 4-vector ? a matrix ?

(ii) Show that /p
2 = p2I4 and that γµγ

µ = 4I.

(iii) Compute Tr(γµγ5), Tr(γµγν), Tr(γµγνγα), Tr(γµγνγαγβ). All these
traces are very important for the calculation of S-matrix elements. They can
(and must !) be performed without having recourse to the explicit values of the
γµ-matrices : the Clifford algebra together with the γ5 matrix will be enough.
We recall that the γ5 matrix anti-commutes with all γµ matrices and satisfies(
γ5
)2

= I.
(iv) Compute Tr(γ5γµγν),
(v) Compute Tr(/p/k), Tr(/p/k/q), Tr(/p/k/p

′/k
′
).

(vi) Multiply on the left the Dirac equation (for a free particle) by (i/∂ +m)
and show that the Dirac equation on ψ implies the Klein-Gordon equation on
(each component of) ψ.
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