Course Title :

Number of hours/semester: $60 \mathrm{~h}, 1^{\text {st }}$ Semester
Number of ECTS :

Quantum Field Theory

6

Pedagogical methods:
Prerequisites:

Modalities of knowledge assessment:

Plan of the lectures:

1. Preliminary course on Group Theory (Notions of Lie Groups and Lie Algebras, SU(2) and SO(3), Lorentz and Poincaré groups, representations)
2. Classical field theory:Lagrangian formalism, variational principle, Euler-Lagrange equations
3. Relativistic fields : free real scalar field, Klein-Gordon equation, Noether theorem ; Complex scalar field and U(1) invariance.
4. Quantization of the free scalar field.
5. Free Dirac field : Spinors, Dirac equation.
6. Quantization of the free Dirac field.
7. $\mathrm{U}(1)$ gauge-invariance ; Maxwell field.
8. Scalar field coupled to a source : Klein-Gordon propagator
9. Interactions: Asymptotic states, scattering amplitudes, Smatrix , reduction formulae, correlation functions.
10. Perturbation expansion; Feynman diagrams in scalar field theory.
11. Quantum Electrodynamics : Fermion and Photon propagators, Feynman diagrams, calculation of tree level processes.
12. Spontaneous symmetry breaking: Goldstone and Higgs in abelian theories
13. Non-abelian gauge theories;
14. The standard model ;

Lectures and Tutorials

1. Lagrangian formulation of classical systems of point particles
2. Non-relativistic quantum mechanics : Heisenberg and Schrödinger pictures time-independent and time-dependent perturbation theory. Quantization of the Harmonic Oscillator in terms of raising and lowering operators
3. Fourier transforms ; Complex analysis (contour integration in the complex plane, Cauchy theorem)

Written examination at mid-term and at the end of the semester for the first session and Oral examination for second session (for the second session, the maximum grade is limited to 10)

1. Peskin-Schroeder, "An introduction to Quantum Field Theory" 2. Schwartz , "Quantum Field Theory and the Standard Model"
