
Correction – Accelerator Physics
Tutorials

Master NPAC (Nuclei, Particles, Astroparticles, Cosmology)

Antoine Chance∗

Nicolas Pichoff
CEA, IRFU

November 10, 2021

Exercise 1: Cyclotron
1. Give the exit kinetic energy T of ions?

The maximum magnetic rigidity (Bρ)max is BD/2=1 T m. The maximum kinetic
energy is deduced from magnetic rigidity:

pc = γβmc2 =
√

γ2 − 1E0

γ =
√

1 +
(

pc

E0

)2
, Bρ = p

q
, T = (γ − 1) E0

T =


√√√√1 +

(
(Bρ)qc

E0

)2

− 1

E0

Tmax ≈ 4.019 MeV

2. Give the average energy gain per accelerating gap.
At each turn, there are 2 crossings through the accelerating gap. The energy gain
per turn is then:

∆E = Tmax − Tinj

2 × 30
≈ 66.8 keV
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3. Give the RF frequency.
The half-turn time ∆t for an ion is:

∆t = πρ

βc
= πp

Bqβc
= πγm0

Bq

The cyclotron pulsation is:

ω = π

∆t
= qB

γm0

The RF is synchronized with the ion pulsation when ω = ωRF (the dephasing of the
cavity is π when the ion makes one half-turn). The particle is on phase when the
curvature radius is 0.5 m corresponding to a magnetic rigidity of Bρ=0.5 T m. By
using

T = E0


√√√√1 +

(
(Bρ)qc

E0

)2

− 1

 = 1.005 MeV

We find γRF − 1 ≈ 8.991 × 10−5. The RF frequency is thus:

fRF = ω

2π
= qB

2πγRFm0

fRF ≈ 1.280 MHz

4. Calculate the injection phase and the energy gain in each gap.
The energy gain per gap is given by qVRF cos ϕ. The dephasing ∆ϕ of any particle in
one half-turn is:

∆ϕ = π

(
ωRF

γm0

Bq
− 1

)

∆ϕ = π

(
γ

γRF

− 1
)

We have thus the following sequence:

γn+1 = γn + q
VRF

E0
cos (ϕn)

ϕn+1 = ϕn + π

(
γn

γRF

− 1
)

γ0 = 1 + Tinj

E0

We have to adjust ϕ0 to get (γ60 − 1) E0 = Tmax with VRF = 100 kV. We find
ϕ0 ≈ −48.24°.

2



Exercise 2: 3 gap cavity
1. Give a first guess of the vopt for an optimum acceleration.

A first guess is to have the maximum acceleration when both gaps are with a de-
phasing of π.

vopt = ωd

π
= 2fd

= 2 × 107 m s−1

βopt = 0.06667

2. Give the transit time factor T of the system.

By definition, T =

∣∣∣∣∣∫ E(z) exp
(

ı
ωz

βc

)
dz

∣∣∣∣∣∫
|E(z)| dz

.

It is straightforward that
∫

|E(z)| dz = E0(g1 + 2g2).
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T = 1
g1 + 2g2

∣∣∣∣∣∣∣
g1/2∫

−g1/2

exp
(

ı
ωz

βc

)
dz −

−d+g2/2∫
−d−g2/2

exp
(

ı
ωz

βc

)
dz −

d+g2/2∫
d−g2/2

exp
(

ı
ωz

βc

)
dz

∣∣∣∣∣∣∣
T = 1

g1 + 2g2

2βc

ω

[
sin

(
ωg1

2βc

)
− 2 cos

(
ωd

βc

)
sin

(
ωg2

2βc

)]

3. Give the associated T = Topt.
After simplification with d = g1 = 2g2 = 2g:

T = βc

dω

[
sin

(
ωd

2βc

)
− 2 cos

(
ωd

βc

)
sin

(
ωd

4βc

)]

At the guessed velocity βoptc = ωd
π

= 2ωg
π

, we get:

Topt = 1 +
√

2
π

≈ 0.769

A numerical solving of T ′(β) = 0 gives the optimum values, near the first guess:

βopt ≈ 0.073 Topt ≈ 0.7866
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Exercise 3: Storage ring
1. Calculate the curvature radius in dipoles.

ρ = Bρ

B
= E0

√
γ2 − 1

B · q · c

≈ 4.613 m

2. Calculate the electron energy loss per turn.

∆E(keV) = 88.4E(GeV)4

ρm

≈ 409.5 keV

3. Calculate the harmonic number h and the synchronous phase φs.

frev = c

C
= 892 kHz

h = fRF

frev
= 560

Energy gain per turn: ∆E = |q|V sin ϕs
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γtr = 1√
α

= 42.5. γ > γtr ⇒ We are above the transition then φs ∈ [90°, 180°].

φs = π − arcsin ∆E
E

= 2.94 rad = 168°

4. What is the maximum energy acceptance (∆E/E) ?
η = 1

γ2 − α = −5.5 × 10−4

Maximum energy:

δEmax =
√

2qE0T
(

cos φs −
(

π

2 − φs

)
sin φs

)
· β3

s γsmc2λRF

πη

Energy acceptance:

∆E

E
=
√

2qE0T
(

cos φs −
(

π

2 − φs

)
sin φs

)
· β3

s λRF

πηEtot

= 3.67%

5. Calculate the cavity effective voltage V to set ∆E/E = ±4%

V = V0

(
∆E

E

)2

/

(
∆E

E

)2

0

= 2.39MV

6. Calculate the rms energy dispersion of a matched beam with longitudinal rms emit-
tance 430π ° MeV.

H(ϕ, δE) = πη

λRF

δE2

β3
s γsmc2 − qE0T (sin φs (ϕ − sin ϕ) − cos φs (1 − cos ϕ))

δE =
√

β3
s γsmc2qE0TλRF

πη
(sin φs (ϕm − sin ϕm) − cos φs (1 − cos ϕm))

Numerically find ϕ such as ϕ(°) · δE(ϕ)(MeV) = 430 ° MeV. Solution: ϕ = 18.444°

7. Calculate the synchrotron oscillation pulsation Ωs.
By definition:

Ωs = 2πfr

√√√√ ηC2

2πλRF

qE0T

β3
s γsmc2 cos φS

= 40 867 rad s−1
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8. What is the ratio between the betatron wave numbers and the longitudinal one.
Synchrotron tune: νz = Ωs

2πfr
≈ 0.0458

νx

νz

≈ 400 νy

νz

≈ 181

Exercise 4: Space-charge
1. Write down the electric components Eg(r) et Eu(r).

The beam has a cylinder symmetry and is continuous (thus invariant by translation
along longitudinal axis). The symmetry conditions imply a radial electric field only
depending on r(where r is the radius in cylindrical coordinates).
Let us consider a cylinder of radius r and arbitrary length L. Let be Qtot the total
charge in the cylinder. We have:

I = dQtot

dt
(1)

Since the beam is continuous, l is constant and dz = βcdt, which gives:

Qtot = IL

βc
(2)

The Gauss theorem gives:
{

E · dS = Qint

ϵ0
(3)

Qint =
y

ρdτ (4)

Since E = E(r)er, we have:
{

E · dS = 2πrLE(r) (5)

Qint = 2πL

r∫
0

uρ(u)du (6)

E(r) = 1
rϵ0

r∫
0

uρ(u)du (7)

a) Case of a uniform beam
We have:

r∫
0

uρu(u)du =

ρu(0) r2

2 si r < R

ρu(0)R2

2 si r ≥ R
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We have: Qtot = IL
βc

with Qtot = 2πL
∞∫
0

uρ(u)du. Thus:

ρu(0) = I

βcπR2 (8)

Finally we get:

Eu(r) = I

2πϵ0βc


r

R2 si r < R
1
r

si r ≥ R
(9)

b) Case of a Gaussian beam
We have:

r∫
0

uρg(u)du = ρg(0)
r∫

0

u exp
(

−u2

r2
0

)
du (10)

= ρg(0)r2
0

2

(
1 − exp

(
−r2

r2
0

))
(11)

We have: Qtot = IL
βc

with Qtot = 2πL
∞∫
0

uρ(u)du. We get:

ρg(0) = I

βcπr2
0

(12)

Finally, we get:

Eg(r) = I

2πϵ0βc

1 − exp
(
− r2

r2
0

)
r

(13)

2. Write down the RMS beam size
By definition, we have:

σr =

√√√√t r2ρ(r)dτt
ρ(r)dτ

(14)

By using the symmetry, we get:

σr =

√√√√√√√√
∞∫
0

r3ρ(r)dr

∞∫
0

rρ(r)dr
(15)
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a) Case of a uniform beam.
We get:

∞∫
0

r3ρu(r)dr =
R∫

0

r3ρu(0)dr = R4

4 ρu(0) (16)

∞∫
0

rρu(r)dr =
R∫

0

rρu(0)dr = R2

2 ρu(0) (17)

Finally we get:

σu = R√
2

(18)

b) Case of a Gaussian beam.
We get:

∞∫
0

r3ρg(r)dr =
∞∫

0

r3ρg(0) exp
(

−r2

r2
0

)
dr (19)

= ρg(0)


[
−r2

0
2 r2 exp

(
−r2

r2
0

)]∞

0
−

∞∫
0

2r
−r2

0
2 exp

(
−r2

r2
0

) (20)

= ρg(0)r2
0

∞∫
0

r exp
(

−r2

r2
0

)
(21)

= r2
0

∞∫
0

rρg(r)dr (22)

Finally we get:

σg = r0 (23)

3. Express Eg(r) as a function of Eu(r) by considering they have the same RMS size
and beam current.
We have then r0 = R√

2 , which gives:

Eg(r) = I

2πϵ0βc

1 − exp
(
−2r2

R2

)
r

(24)

= Eu(r)
(

1 − exp
(

−2r2

R2

))
R2

r2 si r < R

1 si r ≥ R
(25)
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4. Express the square of the tune depression η2
g(r) as a function of η2

u(r).
By definition,

η = kx

kx,0
(26)

where k2
x is the normalized strength with space-charge and k2

x,0 with no space-charge.
We have k2

x = k2
x,0 − KCE with KCE the normalized strength due to space-charge.

We get then:

η =
√√√√1 − KCE

k2
x,0

(27)

The normalized strength KCE is proportional to the electric field at the particle.Let
be α this factor. it does not depend on the distribution. We have then:

ηu(r) =

√√√√1 − α
Eu(r)
k2

x,0
(28)

ηg(r) =

√√√√1 − α
Eg(r)
k2

x,0
(29)

Thus,

1
k2

x,0
= 1 − η2

u(r)
αEu(r) (30)

η2
g(r) = 1 − (1 − η2

u(r))Eg(r)
Eu(r) (31)

η2
g(r) = 1 − (1 − η2

u(r))
(

1 − exp
(

−2r2

R2

))
R2

r2 si r < R

1 si r ≥ R
(32)

5. What is this value on-axis?
For r ≪ 1, we get:

η2
g(r) ≡ 1 − 2(1 − η2

u(0)) + o(1) (33)

Thus, η2
g(0) = 2η2

u(0) − 1

6. For which value of ηu(0) are the space charge forces greater than the external focusing
strengths?
That happens when ηg(r) ≤ 0 which corresponds to ηu(0) ≤ 1√

2 .
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