Correction - Accelerator Physics Tutorials

Master NPAC (Nuclei, Particles, Astroparticles, Cosmology)

Antoine Chance*
Nicolas Pichoff
CEA, IRFU

November 10, 2021

Exercise 1: Cyclotron

1. Give the exit kinetic energy T of ions?

The maximum magnetic rigidity $(B \rho)_{\max }$ is $B D / 2=1 \mathrm{Tm}$. The maximum kinetic energy is deduced from magnetic rigidity:

$$
\begin{array}{rlrl}
p c & =\gamma \beta m c^{2}=\sqrt{\gamma^{2}-1} E_{0} & \\
\gamma & =\sqrt{1+\left(\frac{p c}{E_{0}}\right)^{2},} \quad B \rho=\frac{p}{q}, \quad T=(\gamma-1) E_{0} \\
T & =\left(\sqrt{1+\left(\frac{(B \rho) q c}{E_{0}}\right)^{2}}-1\right) E_{0} & \\
T_{\max } & \approx 4.019 \mathrm{MeV} &
\end{array}
$$

2. Give the average energy gain per accelerating gap.

At each turn, there are 2 crossings through the accelerating gap. The energy gain per turn is then:

$$
\begin{aligned}
\Delta E & =\frac{T_{\max }-T_{\mathrm{inj}}}{2 \times 30} \\
& \approx 66.8 \mathrm{keV}
\end{aligned}
$$

[^0]3. Give the RF frequency.

The half-turn time Δt for an ion is:

$$
\Delta t=\frac{\pi \rho}{\beta c}=\frac{\pi p}{B q \beta c}=\frac{\pi \gamma m_{0}}{B q}
$$

The cyclotron pulsation is:

$$
\omega=\frac{\pi}{\Delta t}=\frac{q B}{\gamma m_{0}}
$$

The RF is synchronized with the ion pulsation when $\omega=\omega_{\mathrm{RF}}$ (the dephasing of the cavity is π when the ion makes one half-turn). The particle is on phase when the curvature radius is 0.5 m corresponding to a magnetic rigidity of $B \rho=0.5 \mathrm{Tm}$. By using

$$
T=E_{0}\left(\sqrt{1+\left(\frac{(B \rho) q c}{E_{0}}\right)^{2}}-1\right)=1.005 \mathrm{MeV}
$$

We find $\gamma_{\mathrm{RF}}-1 \approx 8.991 \times 10^{-5}$. The RF frequency is thus:

$$
\begin{aligned}
f_{\mathrm{RF}} & =\frac{\omega}{2 \pi}=\frac{q B}{2 \pi \gamma_{\mathrm{RF}} m_{0}} \\
f_{\mathrm{RF}} & \approx 1.280 \mathrm{MHz}
\end{aligned}
$$

4. Calculate the injection phase and the energy gain in each gap.

The energy gain per gap is given by $q V_{\mathrm{RF}} \cos \phi$. The dephasing $\Delta \phi$ of any particle in one half-turn is:

$$
\begin{aligned}
& \Delta \phi=\pi\left(\omega_{R F} \frac{\gamma m_{0}}{B q}-1\right) \\
& \Delta \phi=\pi\left(\frac{\gamma}{\gamma_{R F}}-1\right)
\end{aligned}
$$

We have thus the following sequence:

$$
\begin{aligned}
\gamma_{n+1} & =\gamma_{n}+q \frac{V_{\mathrm{RF}}}{E_{0}} \cos \left(\phi_{n}\right) \\
\phi_{n+1} & =\phi_{n}+\pi\left(\frac{\gamma_{n}}{\gamma_{R F}}-1\right) \\
\gamma_{0} & =1+\frac{T_{\mathrm{inj}}}{E_{0}}
\end{aligned}
$$

We have to adjust ϕ_{0} to get $\left(\gamma_{60}-1\right) E_{0}=T_{\max }$ with $V_{\mathrm{RF}}=100 \mathrm{kV}$. We find $\phi_{0} \approx-48.24^{\circ}$.

Exercise 2: 3 gap cavity

1. Give a first guess of the v_{opt} for an optimum acceleration.

A first guess is to have the maximum acceleration when both gaps are with a dephasing of π.

$$
\begin{aligned}
v_{\mathrm{opt}} & =\frac{\omega d}{\pi}=2 f d \\
& =2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \\
\beta_{\text {opt }} & =0.06667
\end{aligned}
$$

2. Give the transit time factor T of the system.

By definition, $T=\frac{\left|\int E(z) \exp \left(\imath \frac{\omega z}{\beta c}\right) d z\right|}{\int|E(z)| d z}$.
It is straightforward that $\int|E(z)| d z=E_{0}\left(g_{1}+2 g_{2}\right)$.

$$
\begin{aligned}
& T=\frac{1}{g_{1}+2 g_{2}}\left|\int_{-g_{1} / 2}^{g_{1} / 2} \exp \left(\imath \frac{\omega z}{\beta c}\right) d z-\int_{-d-g_{2} / 2}^{-d+g_{2} / 2} \exp \left(\imath \frac{\omega z}{\beta c}\right) d z-\int_{d-g_{2} / 2}^{d+g_{2} / 2} \exp \left(\imath \frac{\omega z}{\beta c}\right) d z\right| \\
& T=\frac{1}{g_{1}+2 g_{2}} \frac{2 \beta c}{\omega}\left[\sin \left(\frac{\omega g_{1}}{2 \beta c}\right)-2 \cos \left(\frac{\omega d}{\beta c}\right) \sin \left(\frac{\omega g_{2}}{2 \beta c}\right)\right]
\end{aligned}
$$

3. Give the associated $T=T_{\mathrm{opt}}$.

After simplification with $d=g_{1}=2 g_{2}=2 g$:

$$
T=\frac{\beta c}{d \omega}\left[\sin \left(\frac{\omega d}{2 \beta c}\right)-2 \cos \left(\frac{\omega d}{\beta c}\right) \sin \left(\frac{\omega d}{4 \beta c}\right)\right]
$$

At the guessed velocity $\beta_{\mathrm{opt}} c=\frac{\omega d}{\pi}=\frac{2 \omega g}{\pi}$, we get:

$$
T_{\mathrm{opt}}=\frac{1+\sqrt{2}}{\pi} \approx 0.769
$$

A numerical solving of $T^{\prime}(\beta)=0$ gives the optimum values, near the first guess:

$$
\beta_{\mathrm{opt}} \approx 0.073 \quad T_{\mathrm{opt}} \approx 0.7866
$$

Exercise 3: Storage ring

1. Calculate the curvature radius in dipoles.

$$
\begin{aligned}
\rho & =\frac{B \rho}{B}=\frac{E_{0} \sqrt{\gamma^{2}-1}}{B \cdot q \cdot c} \\
& \approx 4.613 \mathrm{~m}
\end{aligned}
$$

2. Calculate the electron energy loss per turn.

$$
\Delta E(\mathrm{keV})=88.4 \frac{E(\mathrm{GeV})^{4}}{\rho_{m}} \approx 409.5 \mathrm{keV}
$$

3. Calculate the harmonic number h and the synchronous phase φ_{s}.

$$
\begin{aligned}
f_{\mathrm{rev}} & =\frac{c}{C}=892 \mathrm{kHz} \\
h & =\frac{f_{R F}}{f_{\mathrm{rev}}}=560
\end{aligned}
$$

Energy gain per turn: $\Delta E=|q| V \sin \phi_{s}$
$\gamma_{t r}=\frac{1}{\sqrt{\alpha}}=$ 42.5. $\gamma>\gamma_{t r} \Rightarrow$ We are above the transition then $\varphi_{s} \in\left[90^{\circ}, 180^{\circ}\right]$.
$\varphi_{s}=\pi-\arcsin \frac{\Delta E}{E}=2.94 \mathrm{rad}=168^{\circ}$
4. What is the maximum energy acceptance $(\Delta E / E)$?
$\eta=\frac{1}{\gamma^{2}}-\alpha=-5.5 \times 10^{-4}$
Maximum energy:

$$
\delta E_{\max }=\sqrt{2 q E_{0} T\left(\cos \varphi_{s}-\left(\frac{\pi}{2}-\varphi_{s}\right) \sin \varphi_{s}\right) \cdot \frac{\beta_{s}^{3} \gamma_{s} m c^{2} \lambda_{\mathrm{RF}}}{\pi \eta}}
$$

Energy acceptance:

$$
\begin{aligned}
\frac{\Delta E}{E} & =\sqrt{2 q E_{0} T\left(\cos \varphi_{s}-\left(\frac{\pi}{2}-\varphi_{s}\right) \sin \varphi_{s}\right) \cdot \frac{\beta_{s}^{3} \lambda_{\mathrm{RF}}}{\pi \eta E_{\mathrm{tot}}}} \\
& =3.67 \%
\end{aligned}
$$

5. Calculate the cavity effective voltage V to set $\Delta E / E= \pm 4 \%$

$$
\begin{aligned}
V & =V_{0}\left(\frac{\Delta E}{E}\right)^{2} /\left(\frac{\Delta E}{E}\right)_{0}^{2} \\
& =2.39 \mathrm{MV}
\end{aligned}
$$

6. Calculate the rms energy dispersion of a matched beam with longitudinal rms emittance $430 \pi^{\circ} \mathrm{MeV}$.

$$
\begin{aligned}
H(\phi, \delta E) & =\frac{\pi \eta}{\lambda_{\mathrm{RF}}} \frac{\delta E^{2}}{\beta_{s}^{3} \gamma_{s} m c^{2}}-q E_{0} T\left(\sin \varphi_{s}(\phi-\sin \phi)-\cos \varphi_{s}(1-\cos \phi)\right) \\
\delta E & =\sqrt{\frac{\beta_{s}^{3} \gamma_{s} m c^{2} q E_{0} T \lambda_{\mathrm{RF}}}{\pi \eta}\left(\sin \varphi_{s}\left(\phi_{m}-\sin \phi_{m}\right)-\cos \varphi_{s}\left(1-\cos \phi_{m}\right)\right)}
\end{aligned}
$$

Numerically find ϕ such as $\phi\left({ }^{\circ}\right) \cdot \delta E(\phi)(\mathrm{MeV})=430^{\circ} \mathrm{MeV}$. Solution: $\phi=18.444^{\circ}$
7. Calculate the synchrotron oscillation pulsation Ω_{s}.

By definition:

$$
\begin{aligned}
\Omega_{s} & =2 \pi f_{r} \sqrt{\frac{\eta \mathcal{C}^{2}}{2 \pi \lambda_{\mathrm{RF}}} \frac{q E_{0} T}{\beta_{s}^{3} \gamma_{s} m c^{2}} \cos \varphi_{S}} \\
& =40867 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

8. What is the ratio between the betatron wave numbers and the longitudinal one.

Synchrotron tune: $\nu_{z}=\frac{\Omega_{s}}{2 \pi f_{r}} \approx 0.0458$

$$
\frac{\nu_{x}}{\nu_{z}} \approx 400 \quad \frac{\nu_{y}}{\nu_{z}} \approx 181
$$

Exercise 4: Space-charge

1. Write down the electric components $E_{g}(r)$ et $E_{u}(r)$.

The beam has a cylinder symmetry and is continuous (thus invariant by translation along longitudinal axis). The symmetry conditions imply a radial electric field only depending on r (where r is the radius in cylindrical coordinates).
Let us consider a cylinder of radius r and arbitrary length L. Let be $Q_{\text {tot }}$ the total charge in the cylinder. We have:

$$
\begin{equation*}
I=\frac{d Q_{\mathrm{tot}}}{d t} \tag{1}
\end{equation*}
$$

Since the beam is continuous, l is constant and $d z=\beta c d t$, which gives:

$$
\begin{equation*}
Q_{\mathrm{tot}}=\frac{I L}{\beta c} \tag{2}
\end{equation*}
$$

The Gauss theorem gives:

$$
\begin{align*}
\oiiint \mathbf{E} \cdot d \mathbf{S} & =\frac{Q_{\text {int }}}{\epsilon_{0}} \tag{3}\\
Q_{\text {int }} & =\iiint \int \rho d \tau \tag{4}
\end{align*}
$$

Since $\mathbf{E}=E(r) \mathbf{e}_{r}$, we have:

$$
\begin{align*}
\oiint \mathbf{E} \cdot d \mathbf{S} & =2 \pi r L E(r) \tag{5}\\
Q_{\text {int }} & =2 \pi L \int_{0}^{r} u \rho(u) d u \tag{6}\\
E(r) & =\frac{1}{r \epsilon_{0}} \int_{0}^{r} u \rho(u) d u \tag{7}
\end{align*}
$$

a) Case of a uniform beam

We have:

$$
\int_{0}^{r} u \rho_{u}(u) d u= \begin{cases}\rho_{u}(0) \frac{r^{2}}{2} & \text { si } r<R \\ \rho_{u}(0) \frac{R^{2}}{2} & \text { si } r \geq R\end{cases}
$$

We have: $Q_{\mathrm{tot}}=\frac{I L}{\beta c}$ with $Q_{\mathrm{tot}}=2 \pi L \int_{0}^{\infty} u \rho(u) d u$. Thus:

$$
\begin{equation*}
\rho_{u}(0)=\frac{I}{\beta c \pi R^{2}} \tag{8}
\end{equation*}
$$

Finally we get:

$$
E_{u}(r)=\frac{I}{2 \pi \epsilon_{0} \beta c} \begin{cases}\frac{r}{R^{2}} & \text { si } r<R \tag{9}\\ \frac{1}{r} & \text { si } r \geq R\end{cases}
$$

b) Case of a Gaussian beam

We have:

$$
\begin{align*}
\int_{0}^{r} u \rho_{g}(u) d u & =\rho_{g}(0) \int_{0}^{r} u \exp \left(-\frac{u^{2}}{r_{0}^{2}}\right) d u \tag{10}\\
& =\frac{\rho_{g}(0) r_{0}^{2}}{2}\left(1-\exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)\right) \tag{11}
\end{align*}
$$

We have: $Q_{\mathrm{tot}}=\frac{I L}{\beta c}$ with $Q_{\mathrm{tot}}=2 \pi L \int_{0}^{\infty} u \rho(u) d u$. We get:

$$
\begin{equation*}
\rho_{g}(0)=\frac{I}{\beta c \pi r_{0}^{2}} \tag{12}
\end{equation*}
$$

Finally, we get:

$$
\begin{equation*}
E_{g}(r)=\frac{I}{2 \pi \epsilon_{0} \beta c} \frac{1-\exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)}{r} \tag{13}
\end{equation*}
$$

2. Write down the RMS beam size

By definition, we have:

$$
\begin{equation*}
\sigma_{r}=\sqrt{\frac{\iiint r^{2} \rho(r) d \tau}{\iiint \rho(r) d \tau}} \tag{14}
\end{equation*}
$$

By using the symmetry, we get:

$$
\begin{equation*}
\sigma_{r}=\sqrt{\sqrt{\frac{\int_{0}^{\infty} r^{3} \rho(r) d r}{\int_{0}^{\infty} r \rho(r) d r}}} \tag{15}
\end{equation*}
$$

a) Case of a uniform beam.

We get:

$$
\begin{align*}
& \int_{0}^{\infty} r^{3} \rho_{u}(r) d r=\int_{0}^{R} r^{3} \rho_{u}(0) d r=\frac{R^{4}}{4} \rho_{u}(0) \tag{16}\\
& \int_{0}^{\infty} r \rho_{u}(r) d r=\int_{0}^{R} r \rho_{u}(0) d r=\frac{R^{2}}{2} \rho_{u}(0) \tag{17}
\end{align*}
$$

Finally we get:

$$
\begin{equation*}
\sigma_{u}=\frac{R}{\sqrt{2}} \tag{18}
\end{equation*}
$$

b) Case of a Gaussian beam.

We get:

$$
\begin{align*}
\int_{0}^{\infty} r^{3} \rho_{g}(r) d r & =\int_{0}^{\infty} r^{3} \rho_{g}(0) \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right) d r \tag{19}\\
& =\rho_{g}(0)\left\{\left[-\frac{r_{0}^{2}}{2} r^{2} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)\right]_{0}^{\infty}-\int_{0}^{\infty} 2 r \frac{-r_{0}^{2}}{2} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)\right\} \tag{20}\\
& =\rho_{g}(0) r_{0}^{2} \int_{0}^{\infty} r \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right) \tag{21}\\
& =r_{0}^{2} \int_{0}^{\infty} r \rho_{g}(r) d r \tag{22}
\end{align*}
$$

Finally we get:

$$
\begin{equation*}
\sigma_{g}=r_{0} \tag{23}
\end{equation*}
$$

3. Express $E_{g}(r)$ as a function of $E_{u}(r)$ by considering they have the same RMS size and beam current.
We have then $r_{0}=\frac{R}{\sqrt{2}}$, which gives:

$$
\begin{align*}
E_{g}(r) & =\frac{I}{2 \pi \epsilon_{0} \beta c} \frac{1-\exp \left(-\frac{2 r^{2}}{R^{2}}\right)}{r} \tag{24}\\
& =E_{u}(r)\left(1-\exp \left(-\frac{2 r^{2}}{R^{2}}\right)\right) \begin{cases}\frac{R^{2}}{r^{2}} & \text { si } r<R \\
1 & \text { si } r \geq R\end{cases} \tag{25}
\end{align*}
$$

4. Express the square of the tune depression $\eta_{g}^{2}(r)$ as a function of $\eta_{u}^{2}(r)$.

By definition,

$$
\begin{equation*}
\eta=\frac{k_{x}}{k_{x, 0}} \tag{26}
\end{equation*}
$$

where k_{x}^{2} is the normalized strength with space-charge and $k_{x, 0}^{2}$ with no space-charge. We have $k_{x}^{2}=k_{x, 0}^{2}-K_{C E}$ with $K_{C E}$ the normalized strength due to space-charge. We get then:

$$
\begin{equation*}
\eta=\sqrt{1-\frac{K_{C E}}{k_{x, 0}^{2}}} \tag{27}
\end{equation*}
$$

The normalized strength $K_{C E}$ is proportional to the electric field at the particle.Let be α this factor. it does not depend on the distribution. We have then:

$$
\begin{align*}
& \eta_{u}(r)=\sqrt{1-\alpha \frac{E_{u}(r)}{k_{x, 0}^{2}}} \tag{28}\\
& \eta_{g}(r)=\sqrt{1-\alpha \frac{E_{g}(r)}{k_{x, 0}^{2}}} \tag{29}
\end{align*}
$$

Thus,

$$
\begin{align*}
\frac{1}{k_{x, 0}^{2}} & =\frac{1-\eta_{u}^{2}(r)}{\alpha E_{u}(r)} \tag{30}\\
\eta_{g}^{2}(r) & =1-\left(1-\eta_{u}^{2}(r)\right) \frac{E_{g}(r)}{E_{u}(r)} \tag{31}\\
\eta_{g}^{2}(r) & =1-\left(1-\eta_{u}^{2}(r)\right)\left(1-\exp \left(-\frac{2 r^{2}}{R^{2}}\right)\right) \begin{cases}\frac{R^{2}}{r^{2}} & \text { si } r<R \\
1 & \text { si } r \geq R\end{cases} \tag{32}
\end{align*}
$$

5. What is this value on-axis?

For $r \ll 1$, we get:

$$
\begin{equation*}
\eta_{g}^{2}(r) \equiv 1-2\left(1-\eta_{u}^{2}(0)\right)+o(1) \tag{33}
\end{equation*}
$$

Thus, $\eta_{g}^{2}(0)=2 \eta_{u}^{2}(0)-1$
6. For which value of $\eta_{u}(0)$ are the space charge forces greater than the external focusing strengths?
That happens when $\eta_{g}(r) \leq 0$ which corresponds to $\eta_{u}(0) \leq \frac{1}{\sqrt{2}}$.

[^0]: *Corresponding author: antoine.chance@cea.fr

