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Space-charge force
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1. Space-charge force

1-1. Generalities on fields: static model
1-2. Continuous beam
1-3. Numerical methods
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Field produced by charge and current densities

General case: Maxwell equations

∇·E = ρ

ϵ0

∇×E =−∂B

∂t
∇·B = 0

∇×B =µ0 · j+ 1

c2

∂E

∂t

These charge ρ and current j densities are:

Ï those of the beam (direct space-charge),

Ï those induced in surrounding material (indirect space-charge).
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Two solutions

Ï Simplified model: static

Ï Numerical resolution
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Static model: application case

Ï When beam is continuous, one assumes that charge and current
distributions at a given position are stationary. Fields are then
invariant with time and electric and magnetic fields are independent.

ρ(r, t ), j(r, t ) −→ ρ(r), j(r)

Ï In the bunched beam frame, the particle relative displacements are
generally non-relativistic and field is mainly electrostatic.

E∗(r, t ),B∗(r, t )
β∗≪1−−−−→ E∗(r),0

Lorentz−−−−−−−→
transform

E(r, t ),B(r, t )

Except in specific cases, the magnetic field is not directly computed but

the magnetic force is deduced from the electric force.
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Electrostatic field
Charge distribution

A still charge density ρ [Cm−3] produces an electrostatic field:

E [Vm−1] solution of equations :

 ∇·E = ρ

ϵ0

∇×E = 0
The solution of two coupled equations is not obvious as once we found a
solution of the first, it has to satisfy the second one.

It is then easier to solve a unique equation by remarking that ∇× (∇ f
)= 0,

whatever f .

Defining: E =−∇φ With φ [V] the scalar electrostatic potential.
The system becomes:

∇· (∇φ)=∆φ=− ρ

ϵ0
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Magnetostatic field
Current distribution

A current flux j [Am−2] produces a magnetic field:

B [T] solution of equations :

{
∇×B =µ0 · j

∇·B = 0
The solution of two coupled equations is not obvious as once we found a
solution of the first, it has to satisfy the second one.

It is then easier to solve a unique equation by remarking that ∇· (∇× f) = 0,
whatever f.

Defining: B =∇×A With A [Tm] the magnetic vector potential.
The system becomes:

∇× (∇×A) =µ0j
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Cylindrical continuous beam

ρ(x, y, z) → ρ(r )

j(x, y, z) → j (r )ez

r =
√

x2 + y2

Gauss theorem:
Ò

E ·dS =
Ð

ρdτ
ϵ0

Er (r ) = 1

ϵ0 · r

∫ r

0
r ′ ·ρ(r ′) ·dr ′

Ampere theorem:
∮

B×dl =µ0
Ð

jdS

Bθ(r ) = µ0

r

∫ r

0
r ′ · j(r ′) ·dr ′
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Cylindrical continuous beams
Some examples

Charge per linear meter:

ρ(r ) = λ0

2πr
·δ(r ) −→ Er (r ) = λ0

2πϵ0
· 1

r

Uniform beam: electric field linear with r in beam

ρ(r ) =


λ
π·R2

h
if r < Rh

0 otherwise
−→ Er (r ) =


λ

2πϵ0
· r

R2
h

if r < Rh

λ
2πϵ0

· 1
r otherwise

Gaussian beam:

ρ(r ) = λ

2πσ2
r
·exp

(
− r 2

2σ2
r

)
−→ Er (r ) = λ

2πϵ0
· 1

r
·
(
1−exp

(
− r 2

2σ2
r

))
Ï λ [Cm−1] is the charge per linear meter: λ= I

β̄·c
Ï I [A] is the beam current
Ï β̄ is the beam particle average velocity
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Cylindrical continuous beam
electric – magnetic forces

Assuming that all particles have the same velocity: v = β̄z c ·uz

j(r ) = ρ(r ) · β̄z c ·uz −→ Bθ(r ) = µ0 · c

r
· β̄z ·

∫ r

0
r ′ ·ρ(r ′) ·dr ′ = Er (r ) · β̄z

c

The force on each particle with charge q and longitudinal reduced
velocity βz is:

Fr = q (Er − vz ·Bθ+ vθ ·Bz ) = q
(
Er −βz c ·Bθ

)
Fr = q ·Er (r ) · (1−βz · β̄z

)
Paraxial approximation: β2 =β2

x +β2
y +β2

z ≈β2
z

Fr = q ·Er (r ) · (1−β2)= q ·Er (r )

γ2

Fr scales with 1/γ2: Laplace force mitigates Coulomb repulsion.
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Elliptical uniform continuous beam

ρ(x, y, z) =
{

λ
π·X ·Y if x2

X 2 + y2

Y 2 < 1

0 otherwise

Ex (x, y) = λ

2π2 ·ϵ0 ·X ·Y

Y∫
−Y

d y ′ ·
X
p

1−y2/Y 2∫
−X

p
1−y2/Y 2

d x ′ x −x ′(
(x −x ′)2 + (

y − y ′)2
)1/2

Ey (x, y) = λ

2π2 ·ϵ0 ·X ·Y

X∫
−X

d x ′ ·
Y
p

1−x2/X 2∫
−Y

p
1−x2/X 2

d y ′ y − y ′(
(x −x ′)2 + (

y − y ′)2
)1/2


Ex (x, y) = λ

π ·ϵ0
· 1

X +Y
· x

X

Ey (x, y) = λ

π ·ϵ0
· 1

X +Y
· y

Y

(In beam)

Electric field linear with position
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Numerical methods

The space-charge field produced by a set of N particles can be calculated
with different space-charge routines:

Ï PPI (Particle-Particle Interactions) methods
Ï PIC (Particles in cells) methods

Ï direct,
Ï FFT,
Ï relaxation.

Ï Functional methods
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PPI (Particle-Particle Iteraction) Method

At each time step, the field contribution of all particles is calculated at the
position of each particle:

E(ri ) =
N∑

j ̸=i

q j

4πϵ0

ri − r j∥∥ri − r j
∥∥3

Advantages

Ï No mesh

Ï Easy to compute

Drawbacks

Ï Long (∝ N 2),

Ï Artificially colliding
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PIC (Particles in Cells) method

Ï Particles are counted in a mesh with n lattices

Ï In the direct method, the influence of the density in each lattice is
calculated on each mesh node.

Advantages

Ï Low noise (charge smoothing on the mesh)

Drawbacks

Ï Long (∝ n2),

Ï No image charge.
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PIC FFT method

φ(x0, y0, z0) = 1

4πϵ0

Ñ
space

ρ(x, y, z)√
(x −x0)2 + (

y − y0
)2 + (z − z0)2

d x ·d y ·d z

= (
ρ∗G

)
(x, y, z)

With :G = 1

4πϵ0
· 1√

x2 + y2 + z2
.

Then: φ(x, y, z) = F F T −1
(
F F T (ρ)×F F T (G)

)
Advantages

Ï Fast (∝ n · log(n))

Drawbacks

Ï Noisy.

Ï No image charge.
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PIC relaxation method

Illustration in 1D :
∂2φ

∂x2 =−ρ(x)
ϵ0

= ρ′(x)

On each lattice: φi+1 −2φi +φi−1 = ρ′
i ·δ2

Iterative process k: φk+1
i =φk

i +α
(
φk

i+1+φk
i−1−ρ′

i ·δ2

2 −φk
i

)
Advantages

Ï Could be fast (∝ n · log(n), for multigrid)

Ï Image charge

Drawbacks

Ï Limit condition should be defined (or assumed).
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Functional method

ρ(r) =∑
j

A j ·P j (r) with: A j =
N∑

i=1
F

(
ρ (ri ) ,P j (ri )

)
with P j such as: ∆Γ j (r) = P j (r)

⇒ φ(r) =∑
j

A j ·Γ j (r)

Advantages

Ï Mathematically smart.

Drawbacks

Ï Very long,

Ï Noisy,

Ï No image charge
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Linear(ized) motion
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2. Linear(ized) motion

2-1. Beam statistical representation
2-2. Envelope equations
2-3. Space-charge linearisation
2-4. Space-charge tune depression
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Statistical representation

Beam: Set of billions (N) of particles evolving with an independent
variable s (time, curved abscissa. . .)
Macro-particle model: → Set of n macro-particles (n < N)

6 coordinates :

Ï 3 for position: r
(Cartesian, cylindrical. . .)

Ï 3 for motion: p
(velocity, momentum, energy, slope. . .)

Distribution function model: → function

f (r,p) ·d 3r ·d 3p

Expected number of particles
between r and r+dr
between p and p+dp
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RMS sizes

Average value of A
(
r,r′

)
over the beam:

〈
A

(
r,r′

)〉= 1

n

n∑
i=1

A
(
ri ,r′i

)= 1

N

Ï
d 3 f

(
r,r′

) · A
(
r,r′

)
d 3r′

Ï Examples:

C.o.g position:
(〈u〉 ,

〈
u′〉)

RMS size: urms =p
σu =

√〈
(u −〈u〉)2

〉
RMS slope: u′

rms =
p
σu′ =

√〈
(u′−〈u′〉)2〉

RMS coupling: uu′
rms =σuu′ = 〈

(u −〈u〉) · (u′−〈
u′〉)〉

RMS emittance: ϵu,rms =
√

u2
rms ·u′2

rms−
(
uu′

rms

)2
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Twiss parameters

The ellipse matching the best the beam distribution is:

γt ,u ·u2 +2αt ,u ·u ·u′+βt ,u ·u′2 = Au

Such as:

βt ,u = u2
rms

ϵu,rms
= σu

ϵu,rms

γt ,u = u′2
rms

ϵu,rms
= σu′

ϵu,rms

αt ,u =−uu′
rms

ϵu,rms
=− σuu′

ϵu,rms

Are the beam’s Twiss Parameters.
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6D model

Particle 6D phase-space coordinates can be:

ν=



ν1

ν2

ν3

ν4

ν5

ν6





x
px

y
py

z
pz

 or



x
x ′

y
y ′

ϕ

E

 for example

Beam distribution can be modelled by a variance-covariance matrix:

[σ] such as: σi j =
〈
νi ·ν j

〉
The sigma matrix.

One has:
[σ]e = [Te←s] · [σ]s · [Te←s]T

Te←s is the transfer matrix from s to e.
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Transverse motion equation

Particle dynamics:

dp

d t
= F(r,p; t ) ⇒ dp

d s
= F(r,p; s)

βz · c

Magnetic field, no acceleration, transverse motion :

⇒


d

(
x ′ ·βz

)
d s

= Fx (r,β, s)

γ ·βz ·m · c2

d
(
y ′ ·βz

)
d s

= Fy (r,β, s)

γ ·βz ·m · c2

Linac + paraxial approximation: β2
x +β2

y ≪β2
z ≈β2

⇒


d x ′

d s
= Fx (r,β, s)

γ ·β2
z ·m · c2

= F ′
x (r,β, s)

d y ′

d s
= Fy (r,β, s)

γ ·β2
z ·m · c2

= F ′
y (r,β, s)
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Envelope equation (1)

x̃2 = 〈
x2〉

x̃ x̃ ′ = 〈
xx ′〉

x̃ ′2 + x̃ x̃ ′′ = 〈
x ′2〉+〈

xx ′′〉
x̃ ′′ =

〈
x ′2〉+〈

xx ′′〉
x̃

− x̃ ′2

x̃

x̃ ′′ =
〈

x ′2〉+〈
xx ′′〉

x̃
−

〈
xx ′〉2

x̃3

x̃ ′′ =
〈

x ′2〉+〈
xx ′′〉〈

x2
〉1/2

−
〈

xx ′〉2〈
x2

〉3/2
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Envelope equation (2)

RMS size evolution: x̃ ′′ = x ′′
rms =

〈
x ′2〉+〈

x · x ′′〉〈
x2

〉1/2
−

〈
x · x ′〉2〈
x2

〉3/2

By noting that:
〈

x · x ′′〉= 〈
x ·F ′

x

(
r,β, s

)〉
One gets: x̃ ′′− K̃x · x̃ − ϵ̃2

x

x̃3 = 0

ϵ̃x =
√〈

x ′2〉 ·〈x2
〉−〈x · x ′〉2 The horizontal rms emittance

K̃x =
〈

x ·F ′
x

(
r,β, s

)〉
x̃2 The force linearisation coefficient

The linearised force can be applied to the envelope equation or as a
transfer matrix (with sigma matrix).
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Motion linearisation

Fx
(
r,p, s

) linearisation−−−−−−−−→ kx · x

Interest:

Ï Easy

Ï Fast

Ï Efficient

⇒ Equivalent uniform beam
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Equivalent beams

Two beams are said ”equivalent ”when they carry the same current
(continuous) or charge (bunched) and they have the same sigma matrix.

Example of distribution of continuous equivalent beams:
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RMS emittance evolution

d ϵ̃2
x

d s
= d

〈
x ′2〉

d s
·〈x2〉+〈

x ′2〉 · d
〈

x2
〉

d s
−2

〈
x · x ′〉 · d

〈
x · x ′〉
d s

= 2
〈

x ′ · x ′′〉 ·〈x2〉+2
〈

x ′2〉 ·〈x · x ′〉−2
〈

x · x ′〉 · (〈x ′2〉+〈
x · x ′′〉)

= 2
(〈

x ′ · x ′′〉 ·〈x2〉−〈
x · x ′〉 ·〈x · x ′′〉)

If the force is linear:
x ′′ = k · x

The emittance is constant:

d ϵ̃2
x

d s
= 2 ·k · (〈x ′ · x

〉 ·〈x2〉−〈
x · x ′〉 ·〈x2〉)= 0

Rms emittance is conserved in linear force, otherwise it can increase or
decrease !
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Uniform continuous beam

ρ(x, y) =
{
ρ0 if x2

X 2 + y2

Y 2 < 1

0 otherwise

We have:

{
x̃ = X /2

ỹ = Y /2
and: ρ0 = I

π ·X ·Y · v

Space-charge force:


K̃SC,x = q · I

2πϵ0m
(
γβc

)3 · 2

X · (X +Y )
= 2 ·K

X · (X +Y )

K̃SC,y =
q · I

2πϵ0m
(
γβc

)3 · 2

Y · (X +Y )
= 2 ·K

Y · (X +Y )

K = q · I

2πϵ0m
(
γβc

)3 The beam generalized perveance.
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Continuous beam envelope equations


X ′′+k2

x,0(s) ·X − 2K

X +Y
−
ϵ2

x,eff

X 3 = 0

Y ′′+k2
y,0(s) ·Y − 2K

X +Y
−
ϵ2

y,eff

Y 3 = 0

These are the beam 2D
envelope equations

ϵx,eff = 4 · ϵ̃x the effective emittance of the continuous beam.

Or, valid whatever the elliptical beam transverse distribution:
x̃ ′′+k2

x,0(s) · x̃ − K /2

x̃ + ỹ
− ϵ̃2

x

x̃3 = 0

ỹ ′′+k2
y,0(s) · ỹ − K /2

x̃ + ỹ
−
ϵ̃2

y

ỹ3 = 0

These are the beam RMS 2D
envelope equations.
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A few words about the envelope equation


x̃ ′′+k2

x,0(s) · x̃− K /2

x̃ + ỹ
− ϵ̃

2
x

x̃3 = 0

ỹ ′′+k2
y,0(s) · ỹ − K /2

x̃ + ỹ
−
ϵ̃2

y

ỹ3 = 0

The 2D envelope equation has 3 contributors to the dynamics:
Ï k2

x,0(s) · x̃: the external force contributor.

Ï − K /2
x̃+ỹ : the space-charge contributor.
Ï The effect is defocusing (negative sign).
Ï The effect is proportional to the generalized perveance K = q ·I

2πϵ0m(γβc)3 :

it is thus decreasing with energy.
Ï The effect decreases with the beam size: the slope of the electric field

at the core depends on the beam size.

Ï − ϵ̃2
x

x̃3 : the emittance contribution. This term increases when the beam
size is decreasing: that is even the driver for very small beam sizes
(even stronger than space charge).
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Bunched uniform beam

ρ(x, y) =
{
ρ0 if x2

X 2 + y2

Y 2 + z2

Z 2 < 1

0 otherwise

We have:


x̃ = X /

p
5

ỹ = Y /
p

5

z̃ = Z /
p

5

and: ρ0 = Q
4
3π ·X ·Y ·Z

Space-charge force:



F ′
SC,x = q

mc2
· 3

4πϵ0
· Q

β2γ
· 1− f

(X +Y )Z
· x

X

F ′
SC,y = q

mc2
· 3

4πϵ0
· Q

β2γ
· 1− f

(X +Y )Z
· y

Y

F ′
SC,z = q

mc2
· 3

4πϵ0
· Q

β2γ
· f

X Y
· z

Z

f = f
(

X
Y ,

γZp
X Y

)
is a form factor of the ellipsoid.

K3 = q
53/2mc2 · 3

4πϵ0
· Q
β2γ3 the 3-D space charge parameter.

A. Chancé Linear(ized) motion NPAC-2022 Particle Accelerators 5 35/69



Bunched beam envelope equations



X ′′+k2
x,0(s) ·X − K3(1− f )53/2

(X +Y )Z
−
ϵ2

x,eff

X 3 = 0

Y ′′+k2
y,0(s) ·Y − K3(1− f )53/2

(X +Y )Z
−
ϵ2

y,eff

Y 3 = 0

Z ′′+k2
z,0(s) ·Z − K3 f 53/2

X Y
−
ϵ2

z,eff

Z 3 = 0

These are the beam 3D
envelope equations

ϵx,eff = 5 · ϵ̃x the effective emittance of the bunched beam.
Or, valid whatever the ellipsoidal beam distribution:

x̃ ′′+k2
x,0(s) · x̃ − K3(1− f )

(x̃ + ỹ)z̃
− ϵ̃2

x

x̃3 = 0

ỹ ′′+k2
y,0(s) · ỹ − K3(1− f )

(x̃ + ỹ)z̃
−
ϵ̃2

y

ỹ3 = 0

z̃ ′′+k2
z,0(s) · z̃ − K3 f

x̃ ỹ
− ϵ̃2

z

z̃3 = 0

These are the beam RMS 3D
envelope equations.
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Space-charge tune depression

Replacing the periodic focusing force by a continuous force.
The particle motion without space-charge is:

d 2x

d s2 =−
(σx,0

L

)2
· x =−k2

x,0 · x; kx,0 =
(σx,0

L

) Phase advance per
meter.

⇒ x(s) = x0 ·cos
(
kx,0 · s +ϕ)

The particle motion with linearised space-charge is:

d 2x

d s2 =−(
k2

x,0 − K̃SC,x
) · x =−k̃2

x · x

k̃x =
√

k2
x,0 − K̃SC,x = η̃ ·kx,0 RMS Phase advance par meter

with linear space-charge

η= k̃x
kx,0

Space-charge tune depression
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Space-charge tune depression (2)

Continuous focusing channel Periodic focusing channel

No space-charge:

xnsc(s) = x0 ·cos
(
kx,0 · s +ϕ)

xnsc(s) =
√
β0 ·U ·cos

(
kx,0 · s +ϕ)

Linear space-charge:

xsc(s) = x0 ·cos
(
η̃ ·kx,0 · s +ϕ)

xsc(s) =
√
βsc ·U ·cos

(
η̃ ·kx,0 · s +ϕ)
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Non-linear effects
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3. Non-linear effects

3-1. Tune dispersion
3-2. Matching
3-3. Mismatching
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Non-linear motion equation

Motion equation in a linear continuous external force

d x ′

d s
=−k2

x,0 · x +F ′
x,SC (r, s)

The space-charge force can be decomposed:

F ′
x,SC (r, s) =

∑
i>0

kx,SC,i · xi

We obtain then:

d x ′

d s
=−(

k2
x,0 −kx,SC,1

) · x︸ ︷︷ ︸
Linear force

−∑
i>1

kx,SC,i · xi

︸ ︷︷ ︸
Non-linear part
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Tune dispersion

Ï At small oscillation amplitude:

d x ′

d s
=−(

k2
x,0 −kx,SC,1

) · x =−(
ηx,c ·kx,0

)2 · x

ηx,c : Core space-charge depression.

Ï At very large amplitudes:
The particle is often far from the beam it feels essentially the external
force. Its oscillation frequency kx tends to kx,0.

Ï At intermediate amplitude, the particle oscillation frequency depends
on its amplitude: this is the space-charge tune dispersion.

ηx,c ·kx,0 ≤ kx < kx,0

A. Chancé Non-linear effects NPAC-2022 Particle Accelerators 5 42/69



Tune depression: example

Particle trajectories around a uniform beam for various amplitudes.

Question : What is the space-charge tune depression here?
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Motion Hamiltonian

The particle motion can be described with an Hamiltonian H :
dr

d t
= ∂H

∂p
=∇p ·H

dp

d t
=−∂H

∂r
=−∇r ·H

Particles have phase-space trajectories on which the Hamiltonian is
constant (orthogonal to the Hamiltonian gradient)
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Perfect matching

Perfect matching: The beam distribution is stationary
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Distribution function

f
(
r,p, t

) ·dr ·dp

is the number of particle at time t in a small phase-space hyper volume
dr ·dp at position

(
r,p

)
.

Its evolution is given by Vlasov equation:

∂ f

∂t
+ p

m
·∇r f +q

(
E+ p

m
×B

)
·∇p f = 0
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Perfect matching

∂ f

∂t
= 0 ⇒ f

(
r,p

) ·dr ·dp = g
(
H

(
r,p

)) ·dr ·dp

But the Hamiltonian depends on the electrostatic potential φ and thus on
the beam distribution (∆φ=−ρ/ϵ0). With:

ρ(r) =
∫

f
(
r,p

)
dp

The perfectly matched distribution is then solution of the implicit equation:

f
(
r,p

)= g
(
H

(
r,p, f

(
r,p

)))
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Case study

Ï Cylindrical continuous beam.

Ï Radial dynamics only.

Ï Continuous radial linear focusing channel.


dr

d s
= r ′ = ∂H

(
r,r ′, s

)
∂r ′

dr ′
d s

=−k2
0 · r +F ′

SC(r, s) =−∂H(r,r ′, s)

∂r

H(r,r ′, s) = 1

2
· r ′2 + 1

2
·k2

0 · r 2 +VSC(r, s)

VSC(r, s) ≡ qφ(r )

β2γ3mc2

ρ(r ) =
a′(r )∫
0

∫ 2π

0
f (H(r,r ′))r ′dr ′dψ= 2π

1
2 a′(r )2∫

0

f (H(r,r ′))d

(
1

2
r ′2

)

H(r,r ′) = 1

2
r ′2 +W (r ) W (r ) ≡ 1

2
k2

0 · r 2 +VSC(r, s)

1

2
r ′2 = H(r,r ′)−W (r )

1

2
a′(r )2 =W (a)−W (r )
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Case study (2)

ρ(r ) = 2π

W (a)∫
W (r )

f (H)d H

∀r < a; ∆φ= 1

r

d

dr

(
r

dφ(r )

dr

)
=−2π

ϵ0

W (a)∫
W (r )

f (H)d H

Whatever f (H):
Ï If emittance dominated (ηc ≈ 1; VSC ≪ k2

0r 2) (”hot”beam),
Ï the radial profile depends on f ,
Ï the particle phase-space trajectories are ellipses.

Ï If space-charge dominated (ηc ≈ 0; W (r ) ≈ 0 for r < a) (”cold”beam),
Ï the radial profile tends to uniform,
Ï the particle phase-space trajectories tends to rectangular.
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Case study – illustration

Water-bag beam: f (H) =
{

1
H0

if H ≤ H0

0 if H > H0

Radial density Phase-space trajectories or distri-
bution contour-plot

(1): No space-charge
(2)–(4): growing space-charge
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Mismatch - filamentation

The space-charge force is before all non-linear.

A mismatched beam goes filament, and particles are filling gradually the
swept phase-space volume.

With associated RMS emittance growth.
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Mismatch – 1D mode

Hypothesis: Cylindrical uniform beam.

Envelope equation: x̃ ′′+k2
x,0(s) · x̃ − K

4x̃
− ϵ̃x

x̃3 = 0

Mismatched beam: x̃ = x̃a (1+δ)

δ′′+
(
k2

x,0(s)+ K

4 · x̃2
a
+3

ϵ̃x

x̃4
a

)
·δ= 0

δ(s) = M ·cos
(
kd ,r s +ϕ)

With: kd ,r =
√

k2
x,0(s)+ K

4·x̃2
a
+3 ϵ̃x

x̃4
a
= kx,0

√
2 · (1+ η̃2

x
)

The mismatch mode frequency.
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Mismatch – 2D-3D mode

A continuous beam in a quadrupolar channel:
⇒ 2 coupled envelope equations: 2 modes

A bunched beam in a quadrupolar channel and cavities:
⇒ 3 coupled envelope equations: 3 modes
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Second order mismatch-mode parametric resonance

Due to the tune dispersion, there is always a particle amplitude of which
the oscillation frequency is half the mismatch mode frequency.

η̃2
x ·k2

x <
(

kd ,r

2

)2

= k2
x,0 ·

1+ η̃2
x

2
< k2

x,0
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Second order resonance viewing

Uniform distribution; Beam mismatch: 10%; η= 0.85
Particles with an oscillation frequency near half this of a mismatch mode.

Red: particle phase-space trajectory
Blue: stroboscopic viewing at mismatch mode frequency
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Second order resonance viewing (2)

Particles with different initial amplitudes (viewing at mismatch frequency):

Ï No perturbation if large (magenta) or small (cyan) initial amplitudes.
Ï Stability islands (yellow) for particles at the half mismatch frequency.
Ï Oscillation around stability island for particles in the black region.
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Wall effects
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4. Wall effects

4-1. Incoherent and incoherent motion
4-2. Example of an incoherent motion: Plate conductor
4-3. Example of a coherent motion: Circular conductor
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Coherent and incoherent motion

Ï Incoherent motion: the beam consists of many particles, each of
which moves inside the beam with its individual betatron amplitude,
phase, and even tune Q (under the influence of direct space charge).
Amplitude and phase are randomly distributed. The beam and its
centre of gravity – and thus the source of the direct space-charge field
– do not move (static beam).

Ï Coherent motion: A static beam is given a transverse fast deflection
(< 1 turn) and starts to perform betatron oscillations as a whole.
This is readily observed by a position monitor. Note that the source
of the direct space charge is now moving: individual particles still
continue their incoherent motion around the common coherent
trajectory and still experience their incoherent tune shifts as well.
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Image charge: plate conductor

The real charge q attracts charges in the plate conductor (at a distance
d). This charge distribution sets a constant potential in the conductor. It
can be modelled by an image charge −q symmetric of the real charge with
respect to the plate.
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Demonstration of the image charge (plate conductor)

Let us consider a charge q and a perfectly conductor plate at the distance
d . We will use a frame centred on the plate (the position of the charge is
thus (d ,0,0). Potential generated by the charge:

φq = q

4πϵ0

1

∥r∥ = q

4πϵ0

1(
(x −d)2 + y2 + z2

)1/2

Let be φw the potential generated by the wall. The total voltage
φT =φq +φw on the electric plate is at the ground voltage V = 0. We get:

φq (x = 0)+φw (x = 0) = 0

φw (x = 0) =− q

4πϵ0

1(
d 2 + y2 + z2

)1/2
= −q

4πϵ0

1(
(0− (−d))2 + y2 + z2

)1/2

The potential φw is equivalent to the potential generated by a charge −q
at the position x =−d .
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Electric field if beam between two plates

We consider that the beam pipe is rectangular with a vertical height 2h
small compared to the width 2w : h ≪ w .
We assume a linear distribution. The electric field generated by a linear
distribution λ is:

∞∑
n=1

(−1)n

n2
=−π

2

12

Eλ(r) = λ

2πϵ0

xex + yey

x2 + y2

The sum of the image charges is then (y ≪ h):

E(x, y) =
∞∑

n=1

(−1)nλ

2πϵ0

[
xex + (2nh − y)ey

x2 + (2nh − y)2 + xex − (2nh + y)ey

x2 + (2nh + y)2

]
≈ λ

πϵ0

∞∑
n=1

(−1)n
[ xex − yey

4n2h2 +o(x, y)
]

≈ I

βcπϵ0

π2

48h2

(−xex + yey +o(x, y)
)
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Tune shift if beam between two plates

Example for a uniform elliptical continuous beam:
d x ′

d s
=−k2

x,0 · x +F ′
x,SC(r, s) =−k2

x,0 · x + Fx,SC(r, s)

γβ2m0c2

d y ′

d s
=−k2

y,0 · y +F ′
y,SC(r, s) =−k2

y,0 · y + Fy,SC(r, s)

γβ2m0c2
d x ′

d s
+

[
k2

x,0 −
q

πϵ0m0c3

I

β3γ

(
1

γ2X · (X +Y )
− π2

48h2

)]
· x = 0

d y ′

d s
+

[
k2

y,0 −
q

πϵ0m0c3

I

β3γ

(
1

γ2Y · (X +Y )
+ π2

48h2

)]
· y = 0

kx,inc = ηx kx,0 = kx,0

[
1− q

πϵ0m0c3

I

β3γk2
x,0

(
1

γ2X · (X +Y )
− π2

48h2

)]1/2

ky,inc = ηy ky,0 = ky,0

[
1− q

πϵ0m0c3

I

β3γk2
y,0

(
1

γ2Y · (X +Y )
+ π2

48h2

)]1/2
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Wall effects against direct space-charge

Ï The electric image field is vertically defocusing, but horizontally
focusing (sign of image term changes), which by the way is not just a
feature of this particular geometry, but is typical for most
synchrotrons with their rather flattish vacuum pipes;

Ï The field is larger for small chamber height h;

Ï Image effects decrease with 1/γ, much slower than the direct
space-charge term (1/γ3), and thus are of some concern for electron
and high-energy proton machines.

Ï The incoherent motion can be measured by using a quadrupole lens
and by introducing a mismatching. The envelope oscillation period
gives the incoherent tune by dividing by 2.
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Image charge: cylindrical conductor

The charge distribution on a cylindrical conductor of radius R by a charge
per linear meter λ at a distance a from the cylinder center can be
modelled by a charge per linear meter −λ on the charge-cylinder center
axis at distance b such as:

a ·b = R2
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Demonstration of the image charge (cylindrical conductor)

Let us consider a perfectly conductor cylinder of radius R and a linear
charge λ at the position x = a. The frame center is the center of the
cylinder. Electric field generated by the linear charge:

Eq = λ

4πϵ0

∫ ∞

−∞
d zr

∥r∥3 = λ

2πϵ0

r−ax⃗

x2 + y2 +a2 −2ax

Let be Ew the potential generated by the cylinder. The total electric field
ET on the cylinder is normal to the surface. We get:

Eq,θ(r = R)+Ew,θ(r = R) = 0

Ew,θ(r = R) =− λ

2πϵ0

a sinθ

R2 +a2 −2aR cosθ
= −λ

2πϵ0

R2/a sinθ((
R2

a

)2 +R2 −2 R2

a R cosθ

)
The electric field is equivalent to the one generated by a linear charge −λ
at the position x = R2/a.
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Beam dynamics if offset in a circular pipe

Let us consider a linear distribution with an offset of r0 = x0ex + y0ey . The
equivalent charge image of the beam pipe is a linear distribution −λ at the
position r1 = R2

r 2
0

r0. The electric field at the beam center is then:

Eλ(r0) = λ

2πϵ0

r1 − r0

∥r1 − r0∥2 = λ

2πϵ0

r0

R2 − r 2
0

= λ

2πϵ0

r0

R2 +o(x0, y0)


d x ′

0

d s
=−k2

x,0 · x0 +
Fx,SC(r, s)

γβ2m0c2 =
[
−k2

x,0 +
q

πϵ0m0c3

I

β3γ

1

2R2

]
· x0

d y ′
0

d s
=−k2

y,0 · y0 +
Fy,SC(r, s)

γβ2m0c2 =
[
−k2

y,0 +
q

πϵ0m0c3

I

β3γ

1

2R2

]
· y0

kx,coh = ηx kx,0 = kx,0

[
1− q

πϵ0m0c3

I

β3γk2
x,0

1

2R2

]1/2

ky,coh = ηy ky,0 = ky,0

[
1− q

πϵ0m0c3

I

β3γk2
y,0

1

2R2

]1/2
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A few features of the coherent tune shift

Ï The force is linear in r̄, so there is a coherent tune shift.

Ï The 1/γ dependence of the tune shift stems from the fact that the
charged particles induce the electrostatic field and thus generate a
force proportional to their number, but independent of their mass,
whereas the deflection of the beam by this force is inversely
proportional to their mass m0γ.

Ï The coherent tune shift is never positive.

Ï Note that a perfectly conducting beam pipe has been assumed here,
for simplicity. The effects of a thin vacuum chamber with finite
conductivity are more subtle.

Ï The coherent tune shift can be measured by deflecting the beam with
a transverse kicker (with a gate shorter than one revolution period)
and by measuring the position (in a ring, turn after turn or in a linac
at different positions) with a beam position monitor.
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Summary

Ï Space charge force comes from the charge and current beam
distribution: it decreases with energy. At high energy, wall effects
(indirect space charge) are greater than direct space charge.

Ï Space-charge force is non-linear except for uniform distributions.

Ï Two beams are equivalent if they carry the same current and has the
same covariance matrix.

Ï The envelope equation gives the evolution of the RMS beam size and
has 3 contributors: external force, space-charge effect and emittance.

Ï Space-charge forces increase the motion period: tune depression.

Ï The non-linearity makes the tune depend on amplitude: tune
dispersion.

Ï To keep the beam distribution, the beam needs a perfect matching.

Ï If the beam is not matched, beam-size is oscillating.

Ï Some resonances can occur with stability islands.
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