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How to accelerate a beam ?

A. Chancé How to accelerate a beam ? NPAC-2022 Particle Accelerators 2-3 3/93



1. How to accelerate a beam ?

1-1. Energy gain
1-2. Potential
1-3. Plasma acceleration
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Electromagnetic force

Ï Goal: to give (kinetic) energy to the particle.

Ï The Lorentz force F⃗ acts on a particle with
charge q and velocity v⃗ in electromagnetic field(
E⃗ ,B⃗

)
:

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
Ï The force is (by definition) the time derivative

of the particle momentum p⃗: F⃗ = dp⃗

dt
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Particle energies

Ï The particle total energy W is:

W 2 =W 2
0 + (⃗p · p⃗)c2

=
(
γ ·m ·c2

)2
= (W0+T )2

Ï c the speed of light in vacuum.

Ï W0 =mc2 the particle rest energy.

Ï m the particle rest mass.

Ï γ the particle reduced energy.

Ï T the particle kinetic energy.

γ= W

W0
= 1+ T

W0

A. Chancé How to accelerate a beam ? NPAC-2022 Particle Accelerators 2-3 6/93



Energy time evolution

The energy time evolution with time t is:

dW

dt
= p⃗

W
· dp⃗
dt

c2

= γmv⃗

γmc2
·q

(
E⃗ + v⃗ × B⃗

)
c2

= q
(⃗
v · E⃗ + v⃗ ·

(⃗
v × B⃗

))
⇒ dW

dt
= dT

dt
= q · v⃗ · E⃗

⇒ Only the electric field gives (kinetic) energy to the beam
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Energy gain

The energy gain ∆W of a particle over a given path, between positions s⃗0
and s⃗1 is:

v⃗ = ds⃗

dt
∆W (s⃗0 → s⃗1)= q

∫ s⃗1

s⃗0
E⃗ (⃗s;t) ·ds⃗

s is the curved abscissa on the trajectory.
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Beam coordinates

Ï A beam is a set of particles with a non-null average velocity.

Ï (x ,y) is the transverse plan, and z the beam propagation direction
(quantified with a curved abscissa s).

dW

ds
= q · v⃗

vz
· E⃗

= q · (Ez +x ′ ·Ex +y ′ ·Ey )

x ′/y ′ ≡
vx/y

vz
= dx/y

ds

Usually, x ′,y ′ ≪ 1
⇒ The electric field’s transverse component has a very low con-
tribution to the energy gain (compared to the longitudinal one).
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Maxwell equations

Ï We should imagine and develop technological objects homing electric
field with at least 1 hole (most often 2) where the beam can enter
and exit.

Ï The electromagnetic field evolution is given by Maxwell equations:

∇· E⃗ = ρ

ϵ0
∇× E⃗ =−∂B⃗

∂t

∇· B⃗ = 0 c2 ·∇× B⃗ = j⃗

ϵ0
+ ∂E⃗

∂t
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Potential difference

Ï An electrostatic field E⃗ can be represented by a potential U:

E⃗ =−∇·U ⇒ Ew =−∂U
∂w

w = x ,y ,z

Ï The energy gain of a particle going from point A to point B where
potentials are respectively VA and VB is:

∆W (A→B)= q

∫ s⃗B

s⃗A
E⃗ (⃗s) ·ds⃗ = q

∫ sB

sA
Esds

=−q · (VB −VA)

Ï The integration is done on particle trajectory.

Ï The energy can be expressed in eV (electron-Volt): 1 eV = e J.

Ï This is the energy gain of an electron under a potential change of 1 V.
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Van de Graaf accelerator

Ï Charges are deposited at accelerator’s end on an insulating belt by
friction with a polarized metallic brush.

Ï They are transported to the accelerator’s other end where there are
collected.

Ï The return current through resistances column produces voltage, used
to accelerate the beam.
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Use-limitations

Ï When electric field is too high,
electrons can be pulled out from
the surfaces lowering the voltage
(breakdown) or/and consuming
energy (leak).

Ï Ground potential is used as a
reference (U = 0V).

Ï For safety reasons, accelerator tank is at ground potential (where
operators stand).

Ï In an electrostatic accelerator, the maximum accessible energy is then
limited by its transverse size close to the source where the full voltage
is applied.

Ï Electrostatic accelerator voltage is rarely higher than 10MV.
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Plasma acceleration: 1D model and motivations

Ï The big advantage of plasma acceleration is that a plasma can
manage large acceleration gradient ( up to 100GV/m!), paving the
path to compact acceleration (if we consider only the acceleration
medium without the laser ;-))

Ï We will introduce the laser plasma acceleration of electrons.

Ï Plasma acceleration of ions is also an active research field but out of
the scope of this lecture.

Ï The driver in the plasma (to generate plasma oscillations) can be also
a beam.

Ï Main assumptions:
Ï Cold unmagnetised plasma: Te = 0.
Ï Ions initially singly charged (Z = 1) with homogeneous background o

ion density n0and immobile (vi = 0).
Ï Thermal motion negligible compared to induced motion by laser field

(vosc≫ vth,e).
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Plasma acceleration 1D: motion + Maxwell equations

dp

dt
= ∂p

∂t
+ (v ·∇)p=−e (E+v×B) p= γmev

∇·E= e

ϵ0
(n0−ne) ∇×E=−∂B

∂t

∇·B= 0 c2∇×B=− e

ϵ0
nev+ ∂E

∂t

Motion invariant by translation along y and z : ∂y = ∂z = 0.
Linearly polarized laser with plane-wave geometry:

EL =Eyey =−∂Ay

∂t
ey BL =Bzez py = eAy

By using B=∇×A and E=−∇·φ− ∂A
∂t

c2∇× (∇×A)+ ∂2A

∂t2
= J

ϵ0
−∇∂φ

∂t
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Plasma acceleration 1D: potential vector

Let us split J with a rotational (solenoidal) part and irrotational
(longitudinal) part:

J= J⊥+J∥ =∇×Π+∇ψ

c2∇× (∇×A)+ ∂2A

∂t2
= J

ϵ0
−∇∂φ

∂t
⇒ J∥

ϵ0
−∇∂φ

∂t
= 0 vx = ϵ0

ene

∂Ex
∂t

Coulomb’s gauge ∇·A= 0 and py = γmevy = eAy give:

∂2Ay

∂t2
−c2∆Ay = Jy

ϵ0
=− e2ne

ϵ0meγ
Ay

The right-hand nonlinear source term on the right-hand contains two
important bits of physics:

Ï ne = n0+δn, coupling the EM wave to plasma waves,

Ï γ=
√
1+p2/m2

ec2, introducing relativistic effects.
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Plasma acceleration 1D: electric field

Motion equation and Poisson’s law give:

d

dt
(γmevx)=−eEx − e2

2meγ

∂

∂x
A2
y vx = ϵ0

ene

∂Ex
∂t

ne = n0− ϵ0

e

∂Ex
∂x

We make the average on a laser period. Perturbative approach by
linearizing the plasma fluid quantities:

ne ≈ n0+n1 . . . vx ≈ v1+ . . . γ≈ γ0+γ1 . . .

ωp =
√

e2n0
ϵ0me

e
〈
Ay2

〉
mec

= a20
2

γ0 =
√
1+ a20

2

(
γ0

ω2
p

∂2

∂t2
+1

)
eEx =− e2

2meγ0

∂A2
y

∂x

〈Fx 〉 =− e2

2meγ0

∂A2
y

∂x
: relativistic ponderomotive force
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Plasma acceleration (1): linear regime

a0 ≡ eE0
meωc

: normalized potential. a20 ≈ 0.73 ·λ2 [µm] · I0
[
1×1018Wcm−2].

a0 ≈ 1: quasi-linear regime. (I0 = 2×1018Wcm−2,λ= 0.8µm)
If external electrons are injected at the right moment, they can be trapped
in a plasma wave either in the linear or non linear regime.

a0 = 0.15.
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Plasma acceleration (2): non-linear regime

Ï Linear
a0↗−−−→ non linear.

Ï When a0 becomes very
large (a0 > 2), the
electron motion
becomes turbulent.
The electron trajectory
can cross the axis:
wavebreaking.

Ï Electrons from the
plasma can be trapped
in the plasma wave in
extreme a0: blowout
regime.
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Plasma acceleration (3): blowout regime

Ï Pulse compression and
self-focussing.

Ï Electrons are expelled from high
laser intensity area and leave
behind a cavity (bubble filled
with ions).

Ï Electrons self-injected at the
back of the bubble and
accelerated.

Ï Injected electrons modify the
back of the bubble (beam
loading).
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Plasma acceleration (4): limitations

Ï Dephasing between the driver
(laser or beam) and accelerated
electrons.

Ï Limitations on the
accelerating length.

Ï Requires several plasma stages
to go beyond 10 GeV.

Ï Energy depletion of the driver.

Ï Focusing length of the driver.

Ï Other hot topics: preserving
beam quality, reducing
momentum spread,
reproducibility, . . .
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The RF cavity
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2. The RF cavity

2-1. The resonator
2-2. Energy gain
2-3. Transverse effect
2-4. Some examples
2-5. Travelling wave cavity
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RF resonant cavity

Ï Goal : Give kinetic energy to the beam
Ï Basic principle

Ï Conductor enclosing a close volume,
Ï Maxwell equations + Boundary

conditions allow possible
electromagnetic field En/Bn

configurations each oscillating with a
given frequency fn : a resonant
mode. The field is a weighted
superposition of these modes.

Ï The wanted (accelerating) mode is
excited at the good frequency and
position from a RF power supply
through a power coupler,

Ï The phase of the electric field is
adjusted to accelerate the beam.
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Mode calculation (1)

Boundary conditions
close to the surface:

E∥ = 0

B⃗⊥ = 0⃗

Mode calculation:
∆E⃗n+

ω2
n

c2
E⃗n = 0⃗

ωn = 2πfn

c : speed of light

Electric field: E⃗ (r ,t)=∑
n
en(t)E⃗n(⃗r)
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Mode calculation (2)

d2en
dt2

+ω2
nen = ?

1 Joule losses in conductor PJoule =−ωRF

Q0,n
· den
dt

, S1: conductor surface

2 Energy exchange with outside S2: open surface

Pexchange =− ωRF

Qex,n
· den
dt︸ ︷︷ ︸

losses

+Sn(t)e
ı(ωRFt+φ0)︸ ︷︷ ︸
feed

3 Energy exchange with beam : Beam loading V : enclosed volume

Pbeam-loading = knI (t)
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Mode calculation (2)

d2en
dt2

+ω2
nen = − ω2

np
ϵµ

·
∫
S1

(
E⃗ × H⃗n

)
· n⃗ dS1

1 Joule losses in conductor PJoule =−ωRF

Q0,n
· den
dt

, S1: conductor surface

2 Energy exchange with outside S2: open surface

Pexchange =− ωRF
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dt︸ ︷︷ ︸
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Mode calculation (2)

d2en
dt2

+ω2
nen = − ω2

np
ϵµ

·
∫
S1

(
E⃗ × H⃗n

)
· n⃗ dS1

+1

ϵ
· d
dt

∫
S2

(
H⃗ × E⃗n

)
· n⃗ dS2

1 Joule losses in conductor PJoule =−ωRF

Q0,n
· den
dt
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Mode calculation (2)

d2en
dt2

+ω2
nen = − ω2

np
ϵµ

·
∫
S1

(
E⃗ × H⃗n

)
· n⃗ dS1

+1

ϵ
· d
dt

∫
S2

(
H⃗ × E⃗n

)
· n⃗ dS2 −1

ϵ
· d
dt

∫
V

(⃗
J (⃗r ,t) · E⃗n(⃗r)

)
·dV

1 Joule losses in conductor PJoule =−ωRF

Q0,n
· den
dt
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Mode calculation (3)

The last equation can be modelled by :

d2en
dt2

+ ωRF

Qn

den
dt

+ω2
nen = Sn(t)e

ı(ωRFt+φ0)+knI (t)

Which is a damped harmonic oscillator in a forced regime.

With
1

Qn
= 1

Q0,n
+ 1

Qex,n
the quality factor of the cavity

τ= 2
Qn

ωRF
the filling time of the cavity

Sn(t)e
ı(ωRFt+φ0) the RF source

knI (t) the beam loading.
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Shunt impedance per cavity

Ï Cavity length : L

Ï Cavity voltage V0 : V0 =
∫
Êz(z)dz

Ï Dissipated power Pd : Mean power dissipated in conductor over one
RF period.

Ï Shunt impedance R : R = V 2
0

2Pd Pd = 1

2

V 2
0

R

Ï Transit time factor T (calculated later) : ∆Wmax = q ·V0 ·T
Ï ∆Wmax : Maximum energy that can be gained by a particle in the

cavity

Ï Effective shunt impedance : RT 2
RT 2 = ∆W

2
max

2q2Pd
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Shunt impedance per unit length

Ï Cavity mean electric field E0 : E0 = V0

L
= 1

L

∫
Êz(z)dz

Ï Dissipated power per unit length P ′
d : Mean power dissipated per unit

length in conductor over one RF period.

Ï Shunt impedance per unit length Z : Z = E2
0

2P ′
d

= R

L P ′
d = 1

2

E2
0

Z

Ï ∆W ′
max : Maximum energy that can be gained per unit length by a

particle with charge q in the cavity ∆W ′
max = q ·E0 ·T

Ï Effective shunt impedance per unit length : ZT 2
ZT 2 = ∆W

′2
max

2q2P ′
d
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Illustration of shunt impedance

The effective shunt impedance of the structures has been chosen to set the
transition energy between sections for TRISPAL project (C. Bourra,
Thomson).
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Energy gain

Energy gained by a particle in a cavity of length L :

∆W =
∫
qEz(z) ·cosφ(s) ·ds

with: φ(s)=φ0+ω · t =φ0+ ω

c

∫ s

s0

ds

βz(s)
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c
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s0

ds

βz(s)

Assuming a constant velocity : β

∆W = ∫
qEz(z)cos

(
φ0+ ω
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β
)
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T = 1

V0

∫
Ez(s)cos(φ(s)−φp) Transit-time factor

T = 1

V0

∣∣∣∫ Ez(s)e
ıφ(s)

∣∣∣ 0<T < 1
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One-cell cavity ? fast particle

Fast particle : T ≈ 1
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One-cell cavity ? medium particle

Medium particle : T ≈ 0.85
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One-cell cavity ? slow particle

Slow particle : T ≈ 0.3
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Multi-cell cavity
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Transverse kick

Fr = q (Er −vz ·Bθ)

Fr =−qωRF ·V0T

2 ·βc ·γ2 sinφp · r +O(r3)

Ï At first order: a linear lens.

Ï Quickly decreasing with energy.

Ï Increasing with RF frequency.

Ï Phase dependent: front and back differently focused. →
longitudinal-transverse coupling.

Ï Max acceleration (φp = 0) → no average transverse force.
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The RFQ

Ï The Radio-Frequency Quadrupole (RFQ) is used to bunch continuous
beams at low beta (β<0.1) and accelerate it to an energy where it
can be accelerated by a less expensive structure.

Ï The transverse focusing is realized with transverse quadrupole
geometry.

Ï The longitudinal field (for bunching and acceleration) is obtained from
pole modulation increasing progressively (in amplitude and period).
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The DTL

Ï The Drift-Tube Linacs (DTL) is used to accelerate beam with
moderate velocity (0.1<β< 0.4).

Ï The phase difference between consecutive gaps is 2π.

Ï The beam is hidden in drift tube from electric field when decelerated.

Ï The transverse focusing is made with magnetic quadrupole housed in
drift tubes (left) or outside cavities (right).
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The CCL

Ï The Coupled Cavity Linac (CCL) is used to accelerate beam with
large velocity (β> 0.4).

Ï The phase difference between consecutive gaps is π.

Ï Accelerating cells are coupled with either inter-cell holes (left) or
extern coupling cells (right).

Ï The beam enters the next cell when its field is positive.

Ï Transverse focusing with magnetic quadrupole outside cavities.
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The superconducting cavities

Ï The SC cavities can be used at all energy, but are mostly used at high
energy.

Ï Their shape is optimized to minimize the peak fields (magnetic and
electric) on the Nb surface.

Ï The dissipated RF power is small but is made with liquid Helium (low
cryogenic efficiency).
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Travelling wave cavity

Ï Essentially used with relativistic beams (β≈ 1).

Ï The longitudinal filed component is :

Ez(r ,z ,t)=∑
n
En(r) ·e ı(ωt−knz)

Ï En(r) ·e ı(ωt−knz): space harmonic, driven by the cavity periodicity.

Ï Particles whose velocity vp is close to the field phase velocity vφ
exchange (gain) energy. vp ≈ vφ = ω

kn
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RF Accelerator design

A. Chancé RF Accelerator design NPAC-2022 Particle Accelerators 2-3 42/93



3. RF Accelerator design

3-1. Synchronous particle
3-2. Synchronous phase choice
3-3. Momentum compaction
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Synchronous particle: definition

Ï The synchronous particle is an ideal particle travelling on the
accelerator reference trajectory (around which all elements are
positioned) and whose time arrival is used to synchronize all
time-varying elements (mainly cavities).

Ï The accelerator is designed with this synchronous particle.

Ï That is a property of the accelerator (representative of the machine).

Ï The synchronous particle is not linked to the beam !
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In a cyclotron

B ·ρ = p

q
Magnetic rigidity. ρ curvature radius in B field

fc = qB

γm
Cyclotron frequency

fRF = h · fc Synchronism condition
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In a linac

Ï A linac is made of a set of cavities along a linear path s.

Ï It is designed with a hypothetical on-axis synchronous particle.
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In a linac

Ï A linac is made of a set of cavities along a linear path s.

Ï It is designed with a hypothetical on-axis synchronous particle.

Synchronism conditions φi+1 =φi +ω Di
βs ,ic

+ (φs ,i+1−φs ,i )+2πn
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In a linac: examples

Coupled cavity linac
(2π mode)

Independent cavity linac
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In a synchrotron

Ï A synchrotron has h synchronous particles.

Ï h is the harmonic number. h ∈N
Ï frev = βc

C
the beam revolution frequency

Ï Synchronism condition:

fRF = h · frev

⇒ Particle acceleration is made by increasing the magnetic field !

⇒ Do you understand the mechanism ?
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Acceleration condition

Ï The field should accelerate the particle

Ï ∫
Ez(s)ds =V0T cosφ ← Cosine convention (mostly linac).

∆W > 0
qV0T cosφp > 0

⇒ qV0T > 0 : −90◦ <φ< 90◦

qV0T < 0 : 90◦ <φ< 270◦

Ï ∫
Ez(s)ds =V0T sinφ ← Sine convention (mostly synchrotron).

∆W > 0
qV0T sinφp > 0

⇒ qV0T > 0 : 0◦ <φ< 180◦

qV0T < 0 : −180◦ <φ< 0◦
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Stability condition

Energy gain should allow late particles to catch up early ones.
Ï In a linac,

Ï Higher energy (and velocity) particles catch up lower energy particles.
Ï Electric field in cavities should then be growing when synchronous

particle cross it.
Ï Latest particles gain more energy than earliest particles.

Ï In a synchrotron,
Ï Higher energy means higher velocity but also higher magnetic rigidity

leading to higher curvature radius in dipole magnets and then longer
trajectory over one turn.

Ï A higher energy particle goes faster but on a longer path.
Ï Knowing if it will gain or lose time is a balance.
Ï The parameter that tells if the velocity change or path change

dominates is called the slipping factor η.
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η parameter

η= 1

δ

dfrev
frev

is the relative variation of revolution frequency with re-

spect to the relative momentum δ= ∆p
p

η> 0 A higher energy particle turns faster: linacs and low en-
ergy synchrotrons.

η< 0 A lower energy particle turns faster : high energy syn-
chrotrons.

frev = βc

C
⇒ dfrev

frev
= dβ

β
− dC

C

⇒ η= 1

γ2
− 1

δ

dC

C
= γ−2−α

α= 1

δ

dC

C
is the momentum compaction.

γt = 1p
α

is the synchrotron transition energy.
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Stability condition

Cavities should allow latest particles to recover earliest ones.
η> 0 η< 0

linac: η= 1

γ2

LE synchrotron:
1

γ2
>α HE synchrotron:

1

γ2
<α

Stable with a rising field Stable with a falling field
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Periodic dispersion function

Off-momentum particles are not oscillating around the design orbit, but
around a chromatic closed orbit, whose distance from the design orbit
depends linearly on δ.

xδ(s)=Dp(s)δ

Dp is the periodic dispersion function.
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Momentum compaction α

α= 1

δ

dC

C
= 1

δ

dR

R

The momentum compaction is the relative variation
of path length with respect to the relative
momentum

Ï Generally α> 0 : longer path for higher energy particles.

Ï The momentum compaction can be calculated from the periodic
dispersion function Dp.

Dp = ∂x

∂δ

Variation of the transverse position
with relative momentum.

C = 2πρ+n ·L= 2πR

dC = 2π(ρ+〈dx〉dipoles)−2πρ

= 2π
〈
Dp

〉
dipolesδ

α=
〈
Dp

〉
dipoles

R
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Acceleration summary

Ï Only electric field gives kinetic energy.

Ï Energy gain = integral of electric longitudinal component.

Ï Many technologies to give energy.

Ï Mostly used: RF cavity.

Ï Characterized by: modes, shunt impedance, transit time factor.

Ï Accelerator tuned with a synchronous particle (phase, energy).

Ï Different synchronism conditions in linacs, synchrotrons and
cyclotrons.

Ï Synchronous phase :
Ï Acceleration condition, field should be accelerating,
Ï Stability condition, field should be :

Ï increasing in linac and synchrotron at low energy → velocity driven,
Ï decreasing synchrotron at high energy → trajectory driven.
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Longitudinal dynamics
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4. Longitudinal dynamics

4-1. Phase spaces
4-2. Synchronous particle
4-3. Phase evolution
4-4. Energy evolution
4-5. Periodic-continuous focusing channel
4-6. Synchrotron oscillation
4-7. Phase-space trajectory - Hamiltonian
4-8. Adiabatic damping
4-9. Matching
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Longitudinal phase spaces

Independent variable: time t Independent variable: position s

Longitudinal position: Phase or time:
δz (m) δϕ=ω ·δt

Longitudinal momentum: Energy
δpz (eV/c) δW (eV)
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Synchronous particle reference

Particle’s longitudinal coordinates are represented with respect to those of
the synchronous particle.

φ=ϕ−ϕs is the particle relative phase
δE =E −Es is the particle relative energy
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Phase evolution in a drift

dϕ

ds
= 2πfRF

vz
= 2π

βzλRF

Ï fRF is the RF frequency

Ï vz =βz ·c is the longitudinal component of the particle velocity,

Ï c is the physics constant corresponding to the speed of light in
vacuum,

Ï λRF is the RF wavelength in vacuum.

In the frame attached to the synchronous particle:

Assuming:
β−βs
β

≪ 1
δE

Es
≪ 1

We obtain: dφ

ds
=− 2π

λRF
· δE

β3sγ
3
smc2

Q : What is the particle motion in longitudinal phase-space ?
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Energy evolution in a cavity

∆E = q ·V0 ·T sinϕ

Ï T is the transit time factor,

Ï ϕ is the synchronous phase of the particle trough the cavity.

In the frame attached to the synchronous particle:

∆δE = qV0T (cosϕs · sinφ− sinϕs (1−cosφ))

Q : What is the particle motion in longitudinal phase-space ?
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Particle phase-space motion

In a drift In a thin cavity

Q : What is the sign of η and qV0 sinϕs ?
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Equivalent channel

Ï In a real accelerator, cavities are generally regularly distributed.

Ï These cavities are tuned to keep the particle oscillating around the
synchronous particle (stability condition).

Ï This set of cavities can be considered as a periodic focusing channel,
and, like in transverse dynamics, one can define a longitudinal phase
advance per lattice (period) σ as the fraction of oscillation (called
synchrotron motion) of a particle over one lattice of length L.

Ï Two focusing channels are said equivalent if they have the same

phase advance per unit length (
σ

L
).
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Phase-space trajectories

Smaller phase advance ⇒ More regular trajectory
More regular trajectory ⇒ Model of the continuous focusing

channel more relevant.
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Continuous focussing channel

Ï In a continuous focusing channel, the beam is considered in a
continuous field E0.

Ï The motion equations are then simple (at least to write) with a
confinement force not depending on time.


dφ

ds
=− 2π

λRF
· δE

β3sγ
3
smc2

dδE

ds
= qE0T (sin(φ+ϕs)− sinϕs)

Average field in equivalent channels
slightly depends on phase advance
per lattice.
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Synchrotron oscillation

Ï Preceding equations have been established considering a straight
drift-space between cavities (linac case).

Ï In a synchrotron, drift spaces contain dipolar magnets, which
complicated (a little) the preceding equations:

Ï One has to replace:
1

γ2s
by η. Reminder: η= 1

γ2s
−α.

Ï One gets: 
dφ

ds
=−2π ·η

λRF
· δE

β3sγsmc2

dδE

ds
=−qE0T (sinϕs (1−cosφ)−cosϕs sinφ)

⇒ d2φ

ds2
= 2π ·η

λRF

qE0T

β3sγsmc2
(sinϕs (1−cosφ)−cosϕs sinφ)

Ï This is a non-linear oscillator equation describing the synchrotron
oscillation.
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Hamiltonian

The particle motion can be described using a function of phase and
energy: the motion Hamiltonian H(φ,δE ;s)

Hamiltonian
definition:

dφ

ds
=− ∂H

∂δE
dδE

ds
= ∂H

∂φ

H(φ,δE ;s)= π ·η
λRF

δE2

β3sγsmc2
−qE0T (sinϕs (φ− sinφ)−cosϕs (1−cosφ))

A. Chancé Longitudinal dynamics NPAC-2022 Particle Accelerators 2-3 67/93



Phase-space trajectory ϕs = 0° or 180°

When ϕs = 0° or 180°, the synchronous particle is not accelerated.

Q : In which sense are the particles turning ?
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Animation ϕs = 0°: below the transition γ< γt
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Animation ϕs = 180°: above the transition γ> γt
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Phase-space trajectory ϕs = 30° or 150°

When ϕs = 30° or 150°, synchronous particle gets 50% of the possible
energy gain (sin30°).

Q : In which sense are the particles turning ?
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Phase-space trajectory ϕs = 60° or 120°

When ϕs = 60° or 120°, synchronous particle gets 87% of the possible
energy gain (sin60°).
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Animation ϕs = 60°: below the transition γ< γt
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Animation ϕs = 120°: above the transition γ> γt
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Remarks

Ï The Bucket is the phase-surface where particles are accelerated. They
oscillate around synchronous particle and get the same average energy
gain.

Ï The separatrix is the bucket frontier.

Ï The closer the synchronous phase from the crest, the higher the
acceleration but the lower the bucket size.

Ï At injection in a synchrotron, the synchronous phase is ϕs = 0° or
180°.
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Unhooked particles

Ï The unhooked particles are not accelerated in average.

Ï They get late (η> 0) or early (η< 0) on synchronous particles.
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Bucket size

First phase stability limit, P2, such as: φ(P2)=π−2ϕs

Second phase stability limit, P3, such as: H (φ(P3),0)=H (φ(P2),0)
Energy stability limit, δEmax, such as: H (0,δEmax)=H (φ(P2),0)
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Bucket phase size

The second phase stability limit, P3 , is such as:

H (φ(P3),0)=H (π−2ϕs ,0)

H (π−2ϕs ,0)= 2qE0T ·
(
cosϕs −

(π
2
−ϕs

)
sinϕs

)
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Bucket energy size

The energy stability limit, δEmax, is such as:

H (0,δEmax)= 2qE0T ·
(
cosϕs −

(
ϕs − π

2

)
sinϕs

)
δEmax =

√
2qE0T ·

(
cosϕs −

(π
2
−ϕs

)
sinϕs

)
· β

3
sγsmc2λRF

πη
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Linearisation at low amplitude

Ï For φ≪ 1, the Hamiltonian can be approximated by:

H (φ,δE )= πη

λRF
· δE2

β3sγsmc2
+qE0T cosϕs · φ

2

2

Ï This is an ellipse equation in phase-space.

Ï Particle motion is an harmonic oscillator:

d2φ

ds2
=−2πη

λRF

qE0T

β3sγsmc2
cosϕs ·φ=−

Ω2
s ,0

β2s c2
·φ

Ï The synchrotron wave number is:

Qs ,0 =
Ωs ,0

2πfrev
=C

√
η

2πλRF
· qE0T

β3sγsmc2
·cosϕs
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Wave number spread (equations)

Qs = C

S
= C

2
∫ φmax

φmin

dφ

dφ/ds

C trajectory path length
S trajectory length over one
synchrotron oscillation.

with

dφ

ds
=−2πη

λRF
· δE

β3sγsmc2

δE =
√
β3sγsmc2λRF

πη
(H0+qE0T (sinϕs (φ− sinφ)−cosϕs (1−cosφ)))

Qs
Qs ,0

=
p
2π∫ φmax

φmin

dφp|(cosφ−cosφmax)+tanϕs((φ−φmax)−(sinφ−sinφmax))|
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Wave number spread (plots)
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Wave number spread (animation)
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Adiabatic damping


dφ

ds
=−2π ·η

λRF
· δE

β3sγsmc2

dδE

ds
= qE0T (cosϕs sinφ− sinϕs (1−cosφ))

d

ds

(
β3sγs

η
· dφ
ds

)
=− 2π

λRFmc2
qE0T (sinϕs (cosφ−1)+cosϕs sinφ)

d2φ

ds2
+

d
ds

(
β3
sγs
η

)
(
β3
sγs
η

)
︸ ︷︷ ︸
Adiabatic
matching

·dφ
ds

=− 2π ·η ·qE0T
λRFβ

3
sγsmc2

(sinϕs (cosφ−1)+cosϕs sinφ)

A. Chancé Longitudinal dynamics NPAC-2022 Particle Accelerators 2-3 84/93



Animation
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Periodic, linear force Reminder:
transverse dynamics

Ï In the highest simplification level, the external force along direction w
(x , y or ϕ) can be considered periodic, linear, uncoupled and
undamped over one period :

Hill’s equation :
d2w

ds2
+kw (s) ·w = 0 kw (s +S )= kw (s)

Ï Giving : w(s)=√
2Jwβwm(s) ·cos(ψw (s)+ψw0) with:

with : µ0 and Jw constant,

ψw (s)=ψw0+
∫ s

s0

ds

βwm(s)
,

and βwm(s)=βwm (s +S )
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Periodic, linear force (2) See also:
transverse dynamics

Ï In the (w ,w ′) phase-space, the particle is moving on an ellipse of
equation :

γwm(s) ·w2+2αwm(s) ·w ·w ′+βwm(s) ·w ′2 = 2Jw

Courant and Snyder parameters: αwm(s)=−1

2

dβwm(s)

ds

γwm(s)=
1+α2

wm(s)

βwm(s)

Ï The phase advance of the particle in the lattice is:

µ=ψ(s +S )−ψ(s)
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Periodic, linear force (animations) See also:
transverse dynamics

Phase-space trajectory Phase-space periodic looks

Particle trajectory Particle ellipse maximum size
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RMS dimensions See also:
transverse dynamics

The rms dimensions of the beam are defined statistically as followed :

RMS size: σw =
√〈

(w −〈w)〉)2
〉

RMS divergence: σw ′ =
√〈

(w ′−〈w ′)〉)2
〉

RMS emittance: ϵw =
√
σw ·σw ′ −〈

(w −〈w)〉)(w ′−〈w ′)〉)〉2
The beam Twiss parameters are then :

βw = σ2
w

ϵw
γw = σ2

w ′

ϵw

αw =
〈
(w −〈w)〉)(w ′−〈

w ′)〉)〉
ϵw

γwm ·w2+2αwm ·w ·w ′+βwm ·w ′2 = 5ϵw
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(Mis-)matched beam See also:
transverse dynamics

αw =αwm

βw =βwm
γw = γwm

Matched beam
Bigger input beam
Smaller input beam
Mismatched beams
(Phase-space scan)

50% mismatched beam
Phase-space trajectory Phase-space periodic looks
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(Mis-)matched beam (animations) See also:
transverse dynamics

Ï Mismatching ⇒ Emittance growth and Halo formation through :
Ï non linear forces (external or space-charge),
Ï resonance of some particle motion with core oscillation (space-charge).
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(Mis-)matched beam (illustration) See also:
transverse dynamics
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Summary – Longitudinal dynamics

Ï Particle longitudinal motion described in (Phase; Energy) phase-space.

Ï With respect to the synchronous particle (representing accelerator)

Ï Particle oscillation around synchronous particle (synchrotron
oscillation)

Ï Periodic focusing → continuous focusing

Ï Motion ⊥ Hamiltonian gradient

Ï Stable region: bucket inside separatrix

Ï Adiabatic damping in phase when acceleration

Ï Non-linear motion

Ï Filamentation for mismatched beam → emittance growth
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