NPAC course on Astroparticles

CONCLUSIONS

NPAC course on Astroparticles

(incomplete list of) PROBLEMS...

The observed cosmic ray spectrum

Real life is much harder than that...

PAMELA and AMS-02

Spectral breaks at 300 GV

Spectral breaks at 300 GV

Spectral breaks at 300 GV

Acceleration or propagation?

Propagation!

Propagation!

H spectrum is softer than He... (?!?!)

H spectrum is softer than He... (?!?!)

* most pronounced spectral feature in the entire spectrum of cosmic ray particles!

* most pronounced spectral feature in the entire spectrum of cosmic ray particles!

Neutrinos/antineutrinos & electrons/positrons are also produced in pp interactions

$$p + p \to p + p + \pi^0 + \pi^+ + \pi^-$$

Neutrinos/antineutrinos & electrons/positrons are also produced in pp interactions

$$p + p \rightarrow p + p + \pi^{0} + \pi^{+} + \pi^{-}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$

Neutrinos/antineutrinos & electrons/positrons are also produced in pp interactions

$$p + p \rightarrow p + p + \pi^{0} + \pi^{+} + \pi^{-}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$

 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$ $\mu^{\pm} \to e^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{e}(\bar{\nu}_{e})$

Neutrinos/antineutrinos & electrons/positrons are also produced in pp interactions

Final products of proton-proton interactions are not only gamma ray photons but also neutrinos, anti-neutrinos, electrons and positrons

$$E_e \approx E_\nu \approx \frac{E_p}{20}$$

Neutrinos/antineutrinos & electrons/positrons are also produced in pp interactions

$$\begin{array}{c} p+p \rightarrow p+p+\pi^{0}+\pi^{+}+\pi^{-} & \mbox{neutral and charged}\\ \pi^{0} \rightarrow (\gamma+\gamma) & \mbox{ame probability}\\ \pi^{\pm} \rightarrow \mu^{\pm} + (\nu_{\mu}(\bar{\nu}_{\mu})) \\ \mu^{\pm} - e^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{e}(\bar{\nu}_{e}) \end{array}$$

Final products of proton-proton interactions are not only gamma ray photons but also neutrinos, anti-neutrinos, electrons and positrons

$$E_e \approx E_\nu \approx \frac{E_p}{20}$$

CR protons/electrons injected with a spectrum ->

 $Q_p(E) \propto E^{-\delta}$

 $Q_{e^-}(E) \propto E^{-\delta}$

CR protons/electrons injected with a spectrum ->

 $Q_p(E) \propto E^{-\delta}$ $Q_{e^-}(E) \propto E^{-\delta}$

At equilibrium ->

 $N_p(E) = Q_p(E) \times \tau_{esc}(E) \propto E^{-\delta - \alpha}$

CR protons/electrons injected with a spectrum ->

 $Q_p(E) \propto E^{-\delta}$ $Q_{e^-}(E) \propto E^{-\delta}$

At equilibrium ->

Positrons come from p-p interactions -> $N_p(E) = Q_p(E) \times \tau_{esc}(E) \propto E^{-\delta - \alpha}$

 $Q_{e^+}(E) \propto N_p(E)$

CR protons/electrons injected with a spectrum ->

At equilibrium ->

Positrons come from p-p interactions ->

Positrons and electrons behave in the same way ->

$$Q_p(E) \propto E^{-\delta} \qquad Q_{e^-}(E) \propto E^{-\delta}$$

 $N_p(E) = Q_p(E) \times \tau_{esc}(E) \propto E^{-\delta - \alpha}$

 $Q_{e^+}(E) \propto N_p(E)$

$$\frac{N_{e^+}(E)}{N_{e^-}(E)} = \frac{Q_{e^+}(E)}{Q_{e^-}(E)} \propto E^{-\alpha}$$

Positron fraction

Dark matter decay?

Anisotropy $\int_{-1}^{1} d\mu \ \mu v \ f^{(0)} = 0$

Anisotropy $\int_{-1}^{1} d\mu \ \mu v \ f^{(0)} = 0$

 $\int_{-1}^{1} \mathrm{d}\mu \ \mu v \ f_{\mu}^{(1)} = D \frac{\partial f^{(0)}}{\partial z}$

anisotropic part

Fermi bubbles

So? Two possibilities...

Advertisements...

For a review of the problems of the SNR paradigm

Gabici et al. 2019, IJMPD, 28, 1930022-339 (arXiv:1903.11584)

PhD thesis on Cosmic Rays

COSMIC RAY ACCELERATION IN STAR FORMING REGIONS (ED STEPUP)