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1 The expansion of interstellar bubbles

A supernova explosion releases in an impulsive event an amount of mechanical
energy E. This results in the appearance of a spherical shock expanding in the
ambient interstellar medium. If the supernova explodes in an homogeneous and
cold medium of mass density %, and if radiative losses can be neglected (i.e. we
are in the Sedov/adiabatic phase), the radius of the shock Rs scales with time
t as:

Rs ∼
(
E

%

)1/5

t2/5 . (1)

1. Using dimensional analysis, derive the scaling of the shock radius with time
assuming that, instead of in an impulsive event, the mechanical energy is
released continuously at a rate L (L is a luminosity and has the dimensions
of an energy per unit time). This is what happens, for example, in stellar
winds from massive stars. Analogously to supernova remnants, the wind
induces the formation of a spherical shock expanding in the interstellar
medium. The mass swept up by the shock is concentrated in a thin shell,
and a low density region (an interstellar bubble, in astronomical jargon)
forms inside the shell.

To derive the scaling between shock radius and time, assume that:

• the system is adiabatic;

• the ambient interstellar medium is homogeneous and is characterised
by a mass density %;

• the shock is strong, i.e., the pressure of the interstellar medium can
be neglected;

• the rate of energy injection L is constant in time, and;

• the mass ejected by the wind is negligible with respect to the mass
of the interstellar medium swept up by the shock.

2. Consider now a system where the shock is radiative but the fluid injected
by the wind is adiabatic (interstellar bubbles spend most of their life in
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this phase). Show that in this case the slope η of the scaling Rs = A× tη
is identical to that obtained in point 1 above, while the normalization
factor A is affected. [Hint: repeat what has been done in point 1 above by
substituting L with an effective luminosity Leff = L − Lrad, where Lrad
is the energy radiated away from the shock per unit time. For a radiative
shock Lrad is equal to the flux of mechanical energy flowing across the
shock surface.]

3. How does the scaling change if both the shock and the injected fluid are
radiative? To answer the question, consider a stellar wind injecting an
amount of mass per unit time Ṁ at a velocity vw. Both Ṁ and vw are
constant in time. [Hint: the rate of injection of mechanical energy can be
expressed as L = (1/2)Ṁv2w. The total momentum µtot of the system is
not conserved, being the integral in time of the rate of momentum injection
into the system: µtot =

∫
dtṀvw = Ṁvwt.]

4. How does the scaling change if the system is adiabatic but the energy
injection rate is not constant in time, and scales as L ∝ ta ?

2 The maximum energy of protons and elec-
trons accelerated at shock waves

Astrophysical shock waves are cosmic ray accelerators. Both protons and elec-
trons can be accelerated in such systems. Consider the time evolution of a
supernova remnant shock during the first few centuries after the supernova ex-
plosion. At these early times, the supernova remnant is in the free expansion
phase. During this phase, the shock velocity us ∼ 3×103 km/s remains constant
in time, and thus the shock radius scales as:

Rs = ust . (2)

Assume now that the transport of relativistic particles (both protons and
electrons) close to the shock is diffusive and characterised by the Bohm diffusion
coefficient:

DB =
1

3
RLc , (3)

where RL is the particle Larmor radius and c is the speed of light. Finally,
assume that the magnetic field strength B is constant both in space (upstream
and downstream of the shock) and in time (B does not change during the
evolution of the remnant).

1. Derive or estimate by means of a dimensional argument the expression of
the acceleration time of particles at the shock [Hint: assume the shock to
be plane and infinite].

2. Estimate the energy loss time of protons and electrons due to proton-
proton interactions and synchrotron emission, respectively. Assume that
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the density of the interstellar medium is 1 cm−3 and that the magnetic
field strength at the shock is 30 µG. Compare the energy loss times with
the duration of the free expansion phase and comment.

[Hints:

• The cross section for proton-proton interactions is σpp ≈ 4 × 10−26

cm2, and the inelasticity of the interaction is κ ≈ 0.5.

• The power (energy per unit time) emitted by an electron of energy
E in a magnetic field of strength B is

P =
4

3
σT cγ

2B
2

8π
,

where σT ∼ 6.65× 10−25 cm2 is the Thomson cross section, γ is the
electron Lorentz factor, and c is the seed of light. The mass of the
electron is 9.1× 10−28 g.

• Some useful constants: 1 yr = 3.1× 107 s, 1 eV = 1.6× 10−12 erg.]

3. Estimate now the maximum energy Emax of protons and electrons acceler-
ated at the shock as a function of the time since the supernova explosion.
Show that the behaviour of the scaling of Emax with time is equal for
protons and electrons for times smaller than a time t∗, and different at
later times. Why? What does t∗ represents?

[Hint: an approximate expression for the Larmor radius of a relativistic
particle of energy E (expressed in eV) gyrating around a magnetic field

of strength B (expressed in Gauss) is: RL ∼ E(eV)
300 B(G)cm.]

4. Electrons accelerated at the shock emit synchrotron radiation. Show that,
for times longer than t∗, the maximum energy of the synchrotron photons
εmaxs does not depend on the strength of the magnetic field at the shock,
but depends on the shock velocity only. Demonstrate that the following
scaling applies: εmaxs ∝ u2s. Finally, estimate the numerical value of εs to
show that the synchrotron emission extends up to the X-ray domain.

[Hints:

• electrons of Lorentz factor γ emit synchrotron photons of character-
istic frequency:

νs ∼ γ2
qB

2πmc
(4)

where q = 4.8 × 10−10 statC, B is the magnetic field strength (in
Gauss), m = 9.1× 10−28 g is the electron mass, and c is the speed of
light;

• use the estimate made in the previous exercise of the maximum en-
ergy of electrons accelerated at shocks;

• the value of Planck’s constant is: h = 6.63× 10−27 erg s.]
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3 Very-high-energy gamma rays from the rem-
nant of the supernova SN1987A

The most recent supernova explosion witnessed by human beings in the very
local Universe happened in 1987 in the Large Magellanic Cloud. The Large
Magellanic Cloud is a satellite galaxy of the Milky Way located at a distance of
∼ 50 kpc from the Earth.

Assume that a fraction η of the supernova explosion energy E = 1051 erg has
been converted into cosmic rays of energy larger than 1 GeV, with a differential
energy distribution N(E) ∝ E−2.4 and that these cosmic rays are still confined
within the supernova remnant shell.

1. Estimate the supernova remnant gamma-ray luminosity above photon en-
ergies of 1 TeV as a function of η and of the number density of the ambient
medium n.

2. Gamma-ray telescopes of future generation will be able to detect sources
(above photon energies of 1 TeV) down to a flux level of the order of
φmin ≈ 10−14 cm−2s−1. Determine the values of η and n that would
result in a detection. Comment the result.

[Hint: the production rate of cosmic ray protons Qp(Ep) is connected to that
of gamma rays by the expression:

Qγ(Eγ)E2
γ =

ηπ
3
Qp(Ep)E

2
p

where ηπ ∼ τres/τpp and Eγ ∼ 0.1 × Ep. τres is the residence time of protons
inside the supernova remnant, and τpp is the energy loss time due to proton-
proton interactions.]
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