
NPAC Astroparticles Exam 2020

1 Shock jump conditions in the presence of a magnetic field

Consider a plane, infinite, non-radiative shock moving at a constant speed u1 through a fully ionised plasma of
density %1 and pressure P1. To study this system, it is convenient to move to the rest frame where the shock
is at rest. In this frame, the downstream plasma is slowed down to a velocity u2, it is compressed to a density
%2 and heated up to reach a pressure P2. The shock is characterised by a Mach number M = u1/cs > 1, with
c2s = (5/3)P1/%1, and cs is the speed of sound in the upstream medium (assumed to be a monoatomic gas).

In this exercise, we consider the case where the plasma is magnetised. For simplicity, consider the case where
the magnetic field is perpendicular to the shock normal (i.e. parallel to the shock surface, see figure). Under
these circumstances, the equations of mass, momentum, and energy conservation are:
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where B1 and B2 represent the magnetic field strength upstream and downstream of the shock, respsctively. At
this point, it is convenient to introduce three quantities, the shock compression factor r = %2/%1 > 1, the ratio
between the magnetic and thermal pressure in the upstream plasma α = B2

1/(8πP1), and the Alfven speed in
the upstream plasma vA = B1/

√
4π%1.

1. Find the relationship connecting B2 to B1 and eliminate B2 from the three conservation equations. [Hint:
use the theorem of magnetic flux freezing, which states that the flux of the magnetic field is conserved
across a surface moving with the plasma. Express B2 as a function of B1 and r.]

2. Reduce the three equations above to a single equation containing the three variables r, M and α. [Hint:
you should end up with a cubic equation in r.]

3. Show that the condition for the existence of a shock (i.e. r > 1) is u2
1 > c2s + v2

A (and not u1 > cs as for
shocks propagating in non-magnetised plasmas). [Hint: Notice that r = 1 is a solution. Show then that
the cubic equation in r can be rewritten as (r− 1)(ar2 + br+ c) = 0, where a, b, and c are functions ofM
and α. Then solve for r reminding that r = 1 is not a shock solution.]
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Figure 1: Shock configuration for Exercise 1.
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2 Gamma rays from a starburst galaxy

Starburst galaxies are galaxies characterised by a very high rate of supernova explosions, concentrated in the
galactic nucleus. The nucleus of the starburst galaxy NGC 253, located at a distance of 3.5 Mpc, has been
detected by H.E.S.S. at photon energies in the range 0.3 TeV < Eγ < 10 TeV. The measured gamma-ray
spectrum can be fitted by a power law F (Eγ) = F0(Eγ/TeV)−Γ with F0 = 1.3 × 10−13 cm−2 s−1 TeV−1 and
Γ = 2.4. The nuclear region of NGC 253 is filled with a very dense gas, and this suggests that the observed
gamma ray emission originates from proton-proton interactions between energetic protons and the gas.

Let us now describe in a simplified way the nuclear region of NGC 253. Assume that it is a spherical region
of radius Rnucl ∼ 300 pc, filled with a gas of density ngas ∼ 600 cm−3. Assume that energetic protons are
produced at the centre of the spherical region at a rate Qp(Ep) [number of particles per unit time per unit
energy]. They then diffuse in the turbulent magnetic field and eventually escape the region. The nuclear regions
of starburst galaxies are very turbulent, and therefore the spatial diffusion coefficient of energetic particles is
expected to be much smaller than that in the Milky Way. Here, we will consider a diffusion coefficient along
magnetic field lines equal to D = 1028(Ep/TeV)0.3 cm2/s. The setup of the problem is illustrated in Figure 2.

1. Compute the energy loss time τpp of cosmic ray protons due to proton-proton interactions suffered in the
nuclear region. Express this time scale in years. [Hint: remember that the cross section for proton-proton
interactions is roughly independent on particle energy and is equal to σpp ∼ 4× 10−26 cm2. During each
interaction, a cosmic ray proton loses a fraction κ ∼ 0.5 of its energy (κ is called inelasticity). Cosmic
rays move at the speed of light c = 3× 1010 cm/s. 1 yr ∼ 3× 107 s.]

2. Constrain the diffusive escape time τesc of energetic protons from the nuclear region. [Hint: remember
that D is the diffusion coefficient along magnetic field lines. Since the topology of the magnetic field lines
is unknown only a constrain can be obtained for τesc. 1 pc = 3× 1018 cm.]

3. The spectrum of the energetic protons responsible for the observed gamma ray emission is connected to
the observed gamma ray spectrum by the well known equation:

Qγ(Eγ)E2
γ =

ηπ
3
Qp(Ep)E

2
p where ηπ = 1− exp [− (τesc/τpp)]

where Qγ(Eγ) is the rate at which gamma-ray photons of energy Eγ are emitted from the nuclear region
and ηπ is the fraction of the cosmic ray power converted into pions. Show that Qp(Ep) ∝ E−α

p and find
the value of α. [Hint: can you simplify the expression for ηπ?].

4. Compute the total power Wp injected in the nuclear region in form of energetic protons. Assume that
the spectrum of protons extends as a single power law down to energies of Ep ∼ 1 GeV. [Hint: 1 eV =
1.6× 10−12 erg].
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Figure 2: Setup of the problem for Exercise 2.
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3 Radiation-pressure dominated bubbles

Consider a star cluster (a group of stars concentrated in a very small region of space) emitting energy in form
of photons at a constant rate L. L is a luminosity and has the units of an energy per unit time. We assume
the star cluster to be point like, located at R = 0, and surrounded by a gas of uniform mass density %. Under
certain circumstances, the radiation pressure exerted by the photons onto the surrounding gas can create a
cavity around the cluster. This is because the matter is pushed away from the star cluster and accumulates in
a very thin spherical shell of radius R = Rs. The shell expands supersonically and, as in the case of supernova
remnants, is bounded by a spherical shock wave. The expansion velocity of the shock is us.

If radiation pressure is the dominant force acting on the shell, a scale free solution of the problem can be
found: Rs ∼ Atα and us = αRs/t. Here, t is the time since the star cluster began to emit photons. We will
assume that the shell radiates photons (i.e. the energy of the system is not conserved), that the density in the
cavity is so low that photons are not absorbed there, and that the shell is optically thick (i.e. all the photons
emitted by the stars are absorbed in the shell). Remember that if a photon flux F (energy per unit surface per
unit time) is absorbed by a gas, the momentum transferred to the gas per unit surface and unit time is F/c,
where c is the speed of light. Finally, assume that the expanding spherical shock is strong (i.e. you can neglect
the pressure of the gas surrounding the star cluster).

1. Find the rate µ̇ at which momentum is transferred to the entire shell, and show that such quantity does
not depend on time.

2. Estimate A and α.

3. Call Ek the kinetic energy of the shell, and Erad the total energy radiated by the stars since t = 0. Show
that, while Ek increases with time, the ratio Ek/Erad decreases and tends to zero for late times.

4. Estimate A and α considering a situation where the density of the plasma around the star cluster is not
uniform, but scales as % = %0R

−2, where R is the distance from the cluster.
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