NPAC Astroparticles Exam 2018: solutions

1 Shock waves in magnetised plasmas

1. Let's call B_{1} and B_{2} the strength of the magnetic field upstream and downstream of the shock, respectively. Parallel shock: the gas is compressed by a factor of 4 along magnetic field lines. A surface of area a^{2} parallel to the shock surface and moving with the fluid is not affected by the passage of the shock. So, for the theorem of magnetic flux freezing we have $B_{1} a^{2}=B_{2} a^{2} \longrightarrow B_{1}=B_{2}$. Perpendicular shock: in this case the compression of the gas is across magnetic field lines. A surface of area a^{2} orthogonal to the shock surface and moving with the fluid is reduced to $a^{2} / 4$ after the passage of the shock. So, flux freezing gives: $B_{1} a^{2}=B_{2} a^{2} / 4 \longrightarrow B_{2}=4 B_{1}$.
2. The magnetic field upstream of the shock has a component parallel to the shock normal equal to $B_{1} \cos \vartheta_{1}$, and a component orthogonal to it equal to $B_{2} \sin \vartheta_{1}$. The parallel component is not affected by the shock passage, while the perpendicular one increases by a factor of 4 :

$$
\begin{align*}
B_{2} \cos \vartheta_{2} & =B_{1} \cos \vartheta_{1} \tag{1}\\
B_{2} \sin \vartheta_{2} & =4 B 1 \sin \vartheta_{1} \tag{2}
\end{align*}
$$

From these expressions one can easily see that:

$$
\begin{align*}
B_{2} & =\sqrt{\left(B_{2} \cos \vartheta_{2}\right)^{2}+\left(B_{2} \sin \vartheta_{2}\right)^{2}}=B_{1} \sqrt{1+15 \cos ^{2} \vartheta_{1}} \tag{3}\\
\tan \vartheta_{2} & =4 \tan \vartheta_{1} \tag{4}
\end{align*}
$$

2 High energy cosmic ray electrons

1. The energy density of the magnetic field is:

$$
\begin{equation*}
\omega_{B}=\frac{B^{2}}{8 \pi} \sim 4 \times 10^{-13} \mathrm{erg} / \mathrm{cm}^{3} \sim 0.2 \mathrm{eV} / \mathrm{cm}^{3} \tag{5}
\end{equation*}
$$

which gives an energy loss time:

$$
\begin{equation*}
\left.\tau_{L} \sim \frac{E}{\frac{\mathrm{~d} E}{\mathrm{~d} t}}\right|_{E=20 \mathrm{TeV}} \sim 3 \times 10^{4} \mathrm{yr} \tag{6}
\end{equation*}
$$

2. In a time τ_{L} electrons diffuse a length l_{d} along magnetic field lines:

$$
\begin{equation*}
l_{d} \sim \sqrt{D(20 \mathrm{TeV}) \tau_{L}} \sim 10^{2} \mathrm{pc} \tag{7}
\end{equation*}
$$

3. We don't expect to receive electrons if the age of the source t_{a} is larger than τ_{L}, so we must impose $t_{a}<\tau_{L}$. The maximum distance that cosmic ray electrons can travel along magnetic field lines is thus $l_{d} \sim \sqrt{D(20 \mathrm{TeV}) t_{a}}<\sqrt{D(20 \mathrm{TeV}) \tau_{L}}$. The actual (geometrical) distance of the source will be smaller than l_{d} (magnetic field lines may be curved). The fraction of the Galaxy from which we can receive electrons is:

$$
\begin{equation*}
\phi \ll\left(\frac{l_{d}^{2}}{R_{M W}^{2}}\right) \sim 10^{-4} \tag{8}
\end{equation*}
$$

where $R_{M W}$ is the radius of the Galactic disk. The inequality \ll holds because nearby sources may be magnetically disconnected from us (i.e. magnetic field lines leaving the source never reach the Earth).

3 The gamma-ray emission from the Galactic centre clouds

1. The gas density of the cloud is:

$$
\begin{equation*}
n_{c l}=\frac{M_{c l}}{\pi R_{c l}^{2} h_{c l} m_{p}} \sim 3 \times 10^{2} \mathrm{~cm}^{-3} \gg n_{I S M} \tag{9}
\end{equation*}
$$

2. The energy loss time due to proton-proton interactions is:

$$
\begin{equation*}
\tau_{p p}=\left(\sigma_{p p} c n_{c l} \kappa\right)^{-1} \sim 2 \times 10^{5} \mathrm{yr} \tag{10}
\end{equation*}
$$

3. The typical residence time in the cloud is:

$$
\begin{equation*}
\tau_{\text {res }}(E) \sim \frac{R_{c l}^{2}}{D(E)} \sim 4 \times 10^{4}\left(\frac{E}{3 \mathrm{TeV}}\right)^{-0.3} \mathrm{yr} \tag{11}
\end{equation*}
$$

Protons of energy $E>3 \mathrm{TeV}$ are responsible for the gamma ray emission of photons of energy $E_{\gamma}>0.3$ TeV , which implies that $\tau_{r e s}\left(E_{p}\right) \ll \tau_{p p}$ for all relevant energies. Cosmic ray protons leave the cloud without losing energy.
4. Since $\tau_{\text {res }}(E) \ll \tau_{p p}$ we can use the approximation: $\eta_{\pi} \sim \tau_{r e s} / \tau_{p p}$. Thus, we can write:

$$
\begin{equation*}
Q_{p}\left(E_{p}\right) \propto Q_{\gamma}\left(E_{\gamma}\right)\left(\frac{E_{\gamma}}{E_{p}}\right)^{2} \tau_{r e s}\left(E_{p}\right)^{-1} \propto E_{p}^{-2} \tag{12}
\end{equation*}
$$

5. The condition $\tau_{p p} \gg \tau_{r e s}\left(E_{p}\right) \gg t_{a}$ implies that all the cosmic ray protons injected by the impulsive sources are still within the cloud. In this case the appropriate expression to compute the gamma ray emission is:

$$
\begin{equation*}
Q_{\gamma}\left(E_{\gamma}\right) E_{\gamma}^{2}=\frac{1}{3 \tau_{p p}} N_{p}\left(E_{p}\right) E_{p}^{2} \longrightarrow N_{p}\left(E_{p}\right) \propto E_{p}^{-2.3} \tag{13}
\end{equation*}
$$

The spectrum of cosmic rays can be derived from gamma-ray observations:

$$
\begin{equation*}
N_{p}\left(E_{p}\right) E_{p}=3 \tau_{p p} Q_{\gamma}\left(E_{\gamma}\right) \frac{E_{\gamma}^{2}}{E_{p}}=12 \pi \tau_{p p} d^{2} F_{\gamma}\left(E_{\gamma}\right) \frac{E_{\gamma}^{2}}{E_{p}}=12 \pi \tau_{p p} d^{2} F_{0} 10^{0.3}\left(\frac{E_{p}}{E_{0}}\right)^{-1.3} E_{0} \tag{14}
\end{equation*}
$$

where d is the distance to the Galactic centre and we defined F_{0} and $E_{0}=1 \mathrm{TeV}$ such as $F_{\gamma}\left(E_{\gamma}\right)=$ $F_{0}\left(E_{\gamma} / E_{0}\right)^{-2.3}$. The total energy in form of cosmic rays is then:

$$
\begin{equation*}
W_{C R}(>1 \mathrm{GeV})=\int_{1 \mathrm{GeV}}^{\infty} \mathrm{d} E_{p} E_{p} N_{p}\left(E_{p}\right)=12 \pi \tau_{p p} d^{2} F_{0} 10^{0.3} E_{0}^{2} \int_{1 \mathrm{GeV}}^{\infty} \frac{\mathrm{d} E_{p}}{E_{0}}\left(\frac{E_{p}}{E_{0}}\right)^{-1.3} \sim 5 \times 10^{49} \mathrm{erg} \tag{15}
\end{equation*}
$$

which is about 5% of the typical explosion energy of a supernova.

4 Detonation waves

1. The time-independent physical quantities involved in the problem are ϵ and ϱ. Using dimensional analysis we can write:

$$
\begin{equation*}
\left[R_{s}\right]=[\epsilon]^{\alpha}[\varrho]^{\beta}[t]^{\gamma} \tag{16}
\end{equation*}
$$

where $[x]$ indicates the dimensions of x. The solution is then $R_{s} \sim \epsilon^{1 / 2} t$. Note that this does not depend on the ambient density!
2. At any given time, the energy of the system is given by:

$$
\begin{equation*}
E=E_{0}+\epsilon \varrho \frac{4 \pi}{3} R_{s}^{3} \tag{17}
\end{equation*}
$$

which for $E \gg E_{0}$ (and neglecting numerical factors of order unity) reduces to $E \propto \epsilon \varrho R_{s}^{3}$. By using the well known scaling $R_{s} \sim(E / \varrho)^{1 / 5} t^{2 / 5}$ one can recover the solution obtained in point 1 above.
3. Also in this case the solution is $R_{s} \propto t$ because the dependence on the density cancels out. This can be seen by repeating what was done in point 2 above.

