
NPAC Astroparticles Exam 2018: solutions

1 Shock waves in magnetised plasmas

1. Let’s call B1 and B2 the strength of the magnetic field upstream and downstream of the shock, respectively.
Parallel shock: the gas is compressed by a factor of 4 along magnetic field lines. A surface of area a2

parallel to the shock surface and moving with the fluid is not affected by the passage of the shock. So,
for the theorem of magnetic flux freezing we have B1a

2 = B2a
2 −→ B1 = B2. Perpendicular shock:

in this case the compression of the gas is across magnetic field lines. A surface of area a2 orthogonal to
the shock surface and moving with the fluid is reduced to a2/4 after the passage of the shock. So, flux
freezing gives: B1a

2 = B2a
2/4 −→ B2 = 4B1.

2. The magnetic field upstream of the shock has a component parallel to the shock normal equal to B1 cosϑ1,
and a component orthogonal to it equal to B2 sinϑ1. The parallel component is not affected by the shock
passage, while the perpendicular one increases by a factor of 4:

B2 cosϑ2 = B1 cosϑ1 (1)

B2 sinϑ2 = 4B1 sinϑ1 (2)

From these expressions one can easily see that:

B2 =
√

(B2 cosϑ2)2 + (B2 sinϑ2)2 = B1

√
1 + 15 cos2 ϑ1 (3)

tanϑ2 = 4 tanϑ1 (4)

2 High energy cosmic ray electrons

1. The energy density of the magnetic field is:

ωB =
B2

8π
∼ 4× 10−13erg/cm

3 ∼ 0.2 eV/cm
3

(5)

which gives an energy loss time:

τL ∼
E
dE
dt

|E=20 TeV ∼ 3× 104yr (6)

2. In a time τL electrons diffuse a length ld along magnetic field lines:

ld ∼
√
D(20 TeV)τL ∼ 102pc (7)

3. We don’t expect to receive electrons if the age of the source ta is larger than τL, so we must impose
ta < τL. The maximum distance that cosmic ray electrons can travel along magnetic field lines is thus
ld ∼

√
D(20 TeV)ta <

√
D(20 TeV)τL. The actual (geometrical) distance of the source will be smaller

than ld (magnetic field lines may be curved). The fraction of the Galaxy from which we can receive
electrons is:

φ�
(

l2d
R2
MW

)
∼ 10−4 (8)

where RMW is the radius of the Galactic disk. The inequality � holds because nearby sources may be
magnetically disconnected from us (i.e. magnetic field lines leaving the source never reach the Earth).

3 The gamma-ray emission from the Galactic centre clouds

1. The gas density of the cloud is:

ncl =
Mcl

πR2
clhclmp

∼ 3× 102cm−3 � nISM (9)
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2. The energy loss time due to proton-proton interactions is:

τpp = (σppcnclκ)
−1 ∼ 2× 105yr (10)

3. The typical residence time in the cloud is:

τres(E) ∼ R2
cl

D(E)
∼ 4× 104

(
E

3 TeV

)−0.3
yr . (11)

Protons of energy E > 3 TeV are responsible for the gamma ray emission of photons of energy Eγ > 0.3
TeV, which implies that τres(Ep) � τpp for all relevant energies. Cosmic ray protons leave the cloud
without losing energy.

4. Since τres(E)� τpp we can use the approximation: ηπ ∼ τres/τpp. Thus, we can write:

Qp(Ep) ∝ Qγ(Eγ)

(
Eγ
Ep

)2

τres(Ep)
−1 ∝ E−2p (12)

5. The condition τpp � τres(Ep) � ta implies that all the cosmic ray protons injected by the impulsive
sources are still within the cloud. In this case the appropriate expression to compute the gamma ray
emission is:

Qγ(Eγ)E2
γ =

1

3τpp
Np(Ep)E

2
p −→ Np(Ep) ∝ E−2.3p . (13)

The spectrum of cosmic rays can be derived from gamma-ray observations:

Np(Ep)Ep = 3 τppQγ(Eγ)
E2
γ

Ep
= 12πτppd

2Fγ(Eγ)
E2
γ

Ep
= 12πτppd

2F0100.3
(
Ep
E0

)−1.3
E0 (14)

where d is the distance to the Galactic centre and we defined F0 and E0 = 1 TeV such as Fγ(Eγ) =
F0(Eγ/E0)−2.3. The total energy in form of cosmic rays is then:

WCR(> 1 GeV) =

∫ ∞
1 GeV

dEpEpNp(Ep) = 12πτppd
2F0100.3E2

0

∫ ∞
1 GeV

dEp
E0

(
Ep
E0

)−1.3
∼ 5×1049erg (15)

which is about 5% of the typical explosion energy of a supernova.

4 Detonation waves

1. The time-independent physical quantities involved in the problem are ε and %. Using dimensional analysis
we can write:

[Rs] = [ε]
α

[%]
β

[t]
γ

(16)

where [x] indicates the dimensions of x. The solution is then Rs ∼ ε1/2t. Note that this does not depend
on the ambient density!

2. At any given time, the energy of the system is given by:

E = E0 + ε%
4π

3
R3
s (17)

which for E � E0 (and neglecting numerical factors of order unity) reduces to E ∝ ε%R3
s. By using the

well known scaling Rs ∼ (E/%)1/5t2/5 one can recover the solution obtained in point 1 above.

3. Also in this case the solution is Rs ∝ t because the dependence on the density cancels out. This can be
seen by repeating what was done in point 2 above.

2


