NPAC course on Astroparticles

IV - PLASMA PHYSICS: MagnetoHydroDynamics (MHD)

Outline

- Observational evidences for the presence of magnetic fields: synchrotron radiation
- Plasma physics: basics of MagnetoHydroDynamics (MHD)
- MHD waves: Alfven waves

Motion of a particle in a magnetic field

$\mu=\cos \vartheta$
pitch angle $=$ angle between v and B

$$
\left\{\begin{aligned}
v_{\|} & =\mu v \\
v_{\perp} & =\left(1-\mu^{2}\right)^{1 / 2} v
\end{aligned}\right.
$$

Motion of a particle in a magnetic field

Motion of a particle in a magnetic field

gyration frequency

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=\frac{q B}{2 \pi \gamma m c}
$$

Power emitted by an electron*

non-relativistic $P=\frac{2 e^{2}}{3 c^{2}} a^{2} \longrightarrow P=\frac{2 e^{2}}{3 c^{4}} \gamma^{4}\left[\gamma^{2} a_{\|}^{2}+a_{\perp}^{2}\right] \widetilde{\text { relativisisic }}$

Power emitted by an electron*

$\begin{array}{r}\text { non-relativistic } \\ \hline\end{array}$

* implicit assumption: the energy of the electron does not change during one gyration around the B-field

Power emitted by an electron*

$$
\begin{array}{|c}
\text { non-relativistic } \\
\hline
\end{array}
$$

$$
F_{L}=F_{L, \perp}=\frac{e v_{\perp} B}{c} \equiv \gamma m \frac{\mathrm{~d} v_{\perp}}{\mathrm{d} t} \longrightarrow a_{\perp}=\frac{e v_{\perp} B}{\gamma m c}
$$

[^0]
Power emitted by an electron*

non-relativistic $P=\frac{2 e^{2}}{3 c^{3}} a^{2} \longrightarrow P=\frac{2 e^{2}}{3 c^{3}} \gamma^{4}\left[\gamma^{v} V_{\|}^{2}+\underset{\perp}{\left.a_{\perp}^{2}\right]} \underset{\text { Lorentz force is orthogonal tov }}{\text { relativistic }}\right.$

$$
F_{L}=F_{L, \perp}=\frac{e v_{\perp} B}{c} \equiv \gamma m \frac{\mathrm{~d} v_{\perp}}{\mathrm{d} t} \longrightarrow a_{\perp}=\frac{e v_{\perp} B}{\gamma m c}
$$

$\square P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}$

- Thomson cross section

$$
\sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- magnetic field energy density $\quad U_{B}=B^{2} / 8 \pi$
- ultra relativistic electrons

$$
\beta \longrightarrow 1
$$

- isotropic distribution of particles $\left\langle\sin ^{2} \vartheta\right\rangle=2 / 3$
* implicit assumption: the energy of the electron does not change during one gyration around the B-field

Power emitted by an electron*

non-relativistic $P=\frac{2 e^{2}}{3 c^{3}} a^{2} \longrightarrow P=\frac{2 e^{2}}{3 c^{3}} \gamma^{4}\left[\gamma^{v} \vee_{\|}^{2}+a_{\perp}^{2}\right] \underset{\text { Lorentz force is orthogonal to v }}{\text { relativistic }}$

$$
F_{L}=F_{L, \perp}=\frac{e v_{\perp} B}{c} \equiv \gamma m \frac{\mathrm{~d} v_{\perp}}{\mathrm{d} t} \longrightarrow a_{\perp}=\frac{e v_{\perp} B}{\gamma m c}
$$

$\square P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}$

- Thomson cross section

$$
\sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- magnetic field energy density $\quad U_{B}=B^{2} / 8 \pi$
- ultra relativistic electrons

$$
\beta \longrightarrow 1
$$

- isotropic distribution of particles $\left\langle\sin ^{2} \vartheta\right\rangle=2 / 3$
* implicit assumption: the energy of the electron does not change during one gyration around the B-field

Characteristic frequency

as done for Bremsstrahlung: characteristic time ———> characteristic frequency

Characteristic frequency

as done for Bremsstrahlung: characteristic time ———> characteristic frequency
gyration frequency?

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=
$$

Beaming

Figure 4.3 Relativistic beaming of radiation emitted isotropically in the rest frame K^{\prime}.
the radiation emitted by a relativistic particle is concentrated within a cone of opening angle $1 / \mathrm{y}$ entered along the particle velocity

Characteristic frequency

as done for Bremsstrahlung: characteristic time ———> characteristic frequency
gyration frequency?

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=a^{D}
$$

Figure 6.2 Emission cones at various points of an accelerated particle's trajectory.

Characteristic frequency

as done for Bremsstrahlung: characteristic time ———> characteristic frequency

> gyration frequency?

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=-
$$

photons that reach us are emitted in the time interval:

Figure 6.2 Emission cones at various points of an accelerated particle's trajectory.

Characteristic frequency

as done for Bremsstrahlung: characteristic time $\longrightarrow \longrightarrow$ characteristic frequency

> gyration frequency?

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=
$$

photons that reach us are emitted in the time interval:

Figure 6.2 Emission cones at various points of an accelerated p trajectory.

$$
\Delta t_{e}=\frac{R_{L} \Delta \vartheta}{v_{\perp}}=\frac{1}{\pi \gamma \nu_{B}}
$$

but the arrival time interval is shorter!
when a photon is emitted in 2 , the photon emitted in 1 has traveled a distance: $c \Delta t_{e}$

Characteristic frequency

as done for Bremsstrahlung: characteristic time $\longrightarrow \longrightarrow$ characteristic frequency

gyration frequency?

$$
\nu_{B}=\frac{1}{t_{g}}=\frac{v_{\perp}}{2 \pi R_{L}}=
$$

photons that reach us are emitted in the time interval:

Figure 6.2 Emission cones at various points of an accelerated pi trajectory.

$$
\Delta t_{e}=\frac{R_{L} \Delta \vartheta}{v_{\perp}}=\frac{1}{\pi \gamma \nu_{B}}
$$

but the arrival time interval is shorter!

when a photon is emitted in 2 , the photon emitted in 1 has traveled a distance: $c \Delta t_{e}$

$$
\Delta t_{a}=\frac{c \Delta t_{e}-v_{\perp} \Delta t_{e}}{c} \approx \Delta t_{e}(1-\beta)=\Delta t_{e} \frac{1-\beta^{2}}{1+\beta} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}
$$

Emission from one and many electrons

duration of the received pulse

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

Emission from one and many electrons

duration of the received pulse

characteristic
synchrotron frequency

$$
\begin{aligned}
& \Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B} \\
& \nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2} \frac{q B}{2 \pi m c}
\end{aligned}
$$

Emission from one and many electrons

duration of the received pulse

characteristic
synchrotron frequency

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

$$
\nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2}\left(\frac{q B}{2 \pi m c}\right.
$$

Emission from one and many electrons

duration of the received pulse

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

$$
\nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2} \frac{q B}{2 \pi m c}^{\frac{\text { Larmo }}{}}
$$

power emitted by one electron

$$
P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}
$$

Emission from one and many electrons

duration of the received pulse
characteristic
synchrotron frequency

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

$$
\nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2} \frac{q B}{2 \pi m c}
$$

power emitted by one electron

$$
P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}
$$

particle energy distribution found most often in high energy astrophysics: POWER LAW

$$
N(\gamma)=K \gamma^{-\delta}
$$

Emission from one and many electrons

duration of the received pulse
characteristic
synchrotron frequency
power emitted by one electron

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

$$
\nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2} \frac{q B}{2 \pi m c}
$$

$$
P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}
$$

particle energy distribution found most often in high energy astrophysics: POWER LAW

$$
N(\gamma)=K \gamma^{-\delta}
$$

$L_{s}(\nu)=\int \mathrm{d} \gamma N(\gamma) P(\gamma, B) \delta\left(\nu-\nu_{s}(\gamma, B)\right)$

Emission from one and many electrons

duration of the received pulse

$$
\Delta t_{a} \approx \frac{\Delta t_{e}}{2 \gamma^{2}}=\frac{1}{2 \pi \gamma^{3} \nu_{B}}=\frac{1}{\gamma^{2}} \frac{m c}{q B}
$$

$$
\nu_{s}=\frac{1}{2 \pi \Delta t_{a}}=\gamma^{3} \nu_{B}=\gamma^{2} \frac{q B}{2 \pi m c}
$$

power emitted by one electron

$$
P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}
$$

particle energy distribution found most often in high energy astrophysics: POWER LAW

$$
N(\gamma)=K \gamma^{-\delta}
$$

$$
\begin{aligned}
& L_{s}(\nu)=\int \mathrm{d} \gamma N(\gamma) P(\gamma, B) \delta\left(\nu-\nu_{s}(\gamma, B)\right) \\
& \quad \delta\left(\nu-\nu_{s}(\gamma, B)\right)=\delta(f(\gamma))=\frac{\delta\left(\gamma-\gamma_{0}\right)}{\left|f^{\prime}\left(\gamma_{0}\right)\right|}=\frac{\delta\left(\gamma-\left(\nu / \nu_{L}\right)^{1 / 2}\right)}{2\left(\nu \nu_{L}\right)^{1 / 2}}
\end{aligned}
$$

Emission from one and many electrons

duration of the received pulse
characteristic
synchrotron frequency
power emitted by one electron

$$
P=\frac{4}{3} \sigma_{T} c U_{B} \gamma^{2}
$$

particle energy distribution found most often in high energy astrophysics: POWER LAW

$$
N(\gamma)=K \gamma^{-\delta}
$$

POWER LAW

$$
\begin{gathered}
L_{s}(\nu)=\int \mathrm{d} \gamma N(\gamma) P(\gamma, B) \delta\left(\nu-\nu_{s}(\gamma, B)\right) \propto K B^{\frac{\delta+1}{2}} \nu^{-\frac{\delta-1}{2}} \\
\delta\left(\nu-\nu_{s}(\gamma, B)\right)=\delta(f(\gamma))=\frac{\delta\left(\gamma-\gamma_{0}\right)}{\left|f^{\prime}\left(\gamma_{0}\right)\right|}=\frac{\delta\left(\gamma-\left(\nu / \nu_{L}\right)^{1 / 2}\right)}{2\left(\nu \nu_{L}\right)^{1 / 2}}
\end{gathered}
$$

Synchrotron emission from the Milky Way

radio domain $\longrightarrow 408 \mathrm{MHz}$

radio domain $\longrightarrow 408 \mathrm{MHz}$

Synchrotron emission from the Milky Way

radio domain $\longrightarrow 408 \mathrm{MHz}$

Synchrotron emission: final considerations

$$
L(\nu) \propto K B^{\frac{\delta+1}{2}} \nu^{-\frac{\delta-1}{2}}
$$

Synchrotron emission: final considerations

if we observe a radio flux $F=L / 4 \pi d^{2}$

at a given frequency

Synchrotron emission: final considerations

if we observe a radio flux $F=L / 4 \pi d^{2}$

Synchrotron emission: final considerations

if we observe a radio flux $F=L / 4 \pi d^{2}$

we can estimate a combination of K and B, but not the two quantities separately!!!
several ways to measure B exist, and they indicate $B \sim 3 \mu G$ in the Milky Way

$$
\nu_{s}=\gamma^{2} \frac{q B}{2 \pi m c}\left\{\begin{array}{c}
E_{e}=10 \mathrm{GeV} \longrightarrow \nu_{s} \sim 3 \mathrm{GHz} \text { radio } \\
E_{e}=100 \mathrm{TeV} \longrightarrow \nu_{s} \sim 1 \mathrm{keV} \text { X-rays }
\end{array}\right.
$$

Equipartition magnetic field

 total energy in a synchrotron emitting source $\quad W_{t o t}=W_{B}+W_{C R}$$$
\begin{aligned}
& W_{C R}=W_{e}+W_{p}=\left(1+\frac{W_{p}}{W_{e}}\right) W_{e}=\eta W_{e} \\
& W_{B}=V \times \frac{B^{2}}{8 \pi} \\
& W_{e}=\int_{E_{\min }}^{E_{\max }} \mathrm{d} E E K E^{-\delta}=\frac{\pi}{2-\delta}\left(E_{\max }^{2-\delta}-E_{\text {min }}^{2-\delta}\right) \\
& L(\nu)=C(\delta) K \overparen{B^{\frac{\delta+1}{2}} \nu^{-\frac{\delta-1}{2}} \quad \nu_{s}=A E^{2} B}
\end{aligned}
$$

Equipartition magnetic field

 total energy in a synchrotron emitting source $\quad W_{t o t}=W_{B}+W_{C R}$$$
\left\{\begin{array}{c}
W_{C R}=W_{e}+W_{p}=\left(1+\frac{W_{p}}{W_{e}}\right) W_{e}=\eta W_{e} \\
W_{B}=V \times \frac{B^{2}}{8 \pi} \propto B^{2} \\
W_{e}=\frac{L(\nu) \nu^{\frac{\delta-1}{2}}}{B^{\frac{\delta+1}{2}}(2-\delta)}\left[\left(\frac{\nu_{\max }}{A B}\right)^{\frac{2-\delta}{2}}-\left(\frac{\nu_{\min }}{A B}\right)^{\frac{2-\delta}{2}}\right] \propto B^{-3 / 2}
\end{array}\right.
$$

Equipartition magnetic field

Equipartition magnetic field
too much
energy!

$$
\begin{gathered}
W_{t o t}=C_{B} B^{2}+C_{C R} B^{-3 / 2} \\
B_{\min }=\left(\frac{4 C_{B}}{3 C_{C R}}\right)^{-2 / 7}
\end{gathered}
$$

Equipartition magnetic field

too much energy!

$$
\begin{gathered}
W_{t o t}=C_{B} B^{2}+C_{C R} B^{-3 / 2} \\
B_{\min }=\left(\frac{4 C_{B}}{3 C_{C R}}\right)^{-2 / 7}
\end{gathered}
$$

in the absence of other estimates, the assumption of equipartition is used to estimate a reference value for the magnetic field

The electromagnetic spectrum

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e}$ local neutrality $\rightarrow n_{p}=n_{e}$

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e}$ local neutrality $\rightarrow n_{p}=n_{e}$

$\left.\begin{array}{l}\text { protons } \\ \text { electrons }\end{array}\right\}$ thermal equilibrium $T_{e}=T_{p}=T \rightarrow$ Boltzmann distribution

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e} \quad$ local neutrality $\rightarrow n_{p}=n_{e}$

$\left.\begin{array}{l}\text { protons } \\ \text { - electrons }\end{array}\right\}$ thermal equilibrium $T_{e}=T_{p}=T>$ Boltzmann distribution

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e} \quad$ local neutrality $\rightarrow n_{p}=n_{e}$

$$
\begin{array}{ll}
& \begin{array}{l}
\text { electrostatic potential } \nabla^{2} \phi=-4 \pi \varrho_{e}
\end{array} \\
\varrho_{e}=q\left[\delta(\vec{r})-n_{e} e^{\frac{q \phi}{k T}}+n_{p} e^{-\frac{q \phi}{k T}}\right] \\
\underset{q \phi<k T}{\longrightarrow} q \delta(\vec{r})+\frac{2 n_{e} q^{2}}{k T} \phi
\end{array}
$$

$\left.\begin{array}{l}\text { protons } \\ \text { - electrons }\end{array}\right\}$ thermal equilibrium $T_{e}=T_{p}=T>$ Boltzmann distribution

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e}$ local neutrality $\rightarrow n_{p}=n_{e}$

$\left.\begin{array}{l}\text { protons } \\ \text { electrons }\end{array}\right\}$ thermal equilibrium $T_{e}=T_{p}=T \rightarrow$ Boltzmann distribution

Definition of plasma

Wikipedia: "Plasma is an electrically neutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero)".
fully ionised plasma global neutrality $\rightarrow N_{p}=N_{e}$ local neutrality $\rightarrow n_{p}=n_{e}$

$\left.\begin{array}{l}\text { protons } \\ \text { - electrons }\end{array}\right\}$ thermal equilibrium $T_{e}=T_{p}=T>$ Boltzmann distribution

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields
plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow...

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow..
$\nabla \vec{E}=4 \pi \varrho$
$\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
$\nabla \vec{B}=0$
$\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow..

$$
\begin{gathered}
\nabla \vec{E}=4 \pi \varrho=0 \quad \rightarrow \text { plasma neutrality } \\
\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\nabla \vec{B}=0 \\
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
\end{gathered}
$$

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow..

Maxwell equations

$$
\begin{aligned}
& \nabla \vec{E}=4 \pi \varrho=0 \quad \rightarrow \text { plasma neutrality } \\
& \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \longrightarrow E \approx \frac{L \mathcal{B}}{c T} \underbrace{}_{\substack{\text { characterisitic } \\
\text { length scale } \\
\text { characterisitic } \\
\text { times scale }}} \\
& \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow..

Maxwell equations

$\nabla \vec{E}=4 \pi \varrho=0 \quad \rightarrow$ plasma neutrality
$\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \longrightarrow E \approx \frac{L \mathcal{B}}{c T} \longleftarrow \begin{gathered}\text { characterisistic } \\ \text { length scale } \\ \text { characteristic } \\ \text { thime scale }\end{gathered}$
$\nabla \vec{B}=0$
$\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t} \longrightarrow \frac{\frac{1}{c} \frac{\partial \vec{E}}{\partial t}}{\nabla \times \vec{B}} \approx \frac{\frac{L B}{c^{2} T^{2}}}{\frac{B}{L}} \approx\left(\frac{U}{c}\right)^{2} \ll 1$

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow.

Maxwell equations

$\nabla \vec{E}=4 \pi \varrho=0 \quad \rightarrow$ plasma neutrality
$\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \longrightarrow E \approx \frac{L \mathcal{B}}{c T} \longleftarrow \begin{gathered}\text { charcaterisitic } \\ \text { length scale } \\ \text { characteristic } \\ \text { tame scale }\end{gathered}$
$\nabla \vec{B}=0$
$\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{\lambda} \frac{\partial \vec{E}}{\partial t} \longrightarrow \frac{\frac{1}{c} \frac{\partial \vec{E}}{\partial t}}{\nabla \times \vec{B}} \approx \frac{\frac{L B}{c^{2} T^{2}}}{\frac{B}{L}} \approx\left(\frac{U}{c}\right)^{2} \ll 1$

Magnetohydrodynamics (MHD)

dynamics of electrically conducting fluids in the presence of magnetic fields plasma motion \rightarrow electric fields \rightarrow currents \rightarrow magnetic fields \rightarrow..

Maxwell equations

$\nabla \vec{E}=4 \pi \varrho=0 \quad \rightarrow$ plasma neutrality
$\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \longrightarrow E \approx \frac{L^{<} B}{c T} \underbrace{}_{\substack{\text { characteristic } \\ \text { length scale } \\ \text { characteristic } \\ \text { time scale }}}$
$\nabla \vec{B}=0$
$\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{\lambda} \frac{\partial \vec{E}}{\partial t} \longrightarrow \frac{\frac{1}{c} \frac{\partial \vec{E}}{\partial t}}{\nabla \times \vec{B}} \approx \frac{\frac{L B}{c^{2} T^{2}}}{\frac{B}{L}} \approx\left(\frac{U}{c}\right)^{2} \ll 1$
displacement current
electric currents \rightarrow only source of B-field

Magnetohydrodynamics (MHD)

$n_{p}=n_{e^{->}}$this does not prevent the plasma from possessing electromagnetic properties

Magnetohydrodynamics (MHD)

$n_{p}=n_{e^{->}}$this does not prevent the plasma from possessing electromagnetic properties

$$
\text { electric current } \quad \vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i}
$$

Magnetohydrodynamics (MHD)

$n_{p}=n_{e^{->}}$this does not prevent the plasma from possessing electromagnetic properties

$$
\text { electric current } \vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i}
$$

Ampere law

$$
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j} \longrightarrow j \approx \frac{B c}{4 \pi L} \longrightarrow v_{e i} \approx \frac{B c}{4 \pi q n_{i} L}
$$

Magnetohydrodynamics (MHD)

$n_{p}=n_{e^{->}}$this does not prevent the plasma from possessing electromagnetic properties

$$
\begin{array}{ll}
\text { electric current } & \vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \\
\text { Ampere law } \\
& \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j} \longrightarrow j \approx \frac{B c}{4 \pi L} \longrightarrow v_{e i} \approx \frac{B c}{4 \pi q n_{i} L}
\end{array}
$$

the Sun

- B fields up to $10^{3} \mathrm{G}$!
- generated in a convective region of $L \sim 2 \times 10^{10} \mathrm{~cm}$
- average electron density $n_{e} \sim 10^{23} \mathrm{~cm}^{-3}$

$$
v_{e i} \approx 10^{-12} \mathrm{~cm} / \mathrm{s}
$$

Magnetohydrodynamics (MHD)

$n_{p}=n_{e^{->}}$this does not prevent the plasma from possessing electromagnetic properties

$$
\text { electric current } \quad \vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i}
$$

Ampere law

the Sun

- B fields up to $10^{3} \mathrm{G}$!
- generated in a convective region of $L \sim 2 \times 10^{10} \mathrm{~cm}$
- average electron density $n_{e} \sim 10^{23} \mathrm{~cm}^{-3}$

$$
v_{e i} \approx 10^{-12} \mathrm{~cm} / \mathrm{s}
$$

for any practical purpose we can consider a 1-component plasma electrons and ions are fully coupled

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem
electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities -> rest frame where the plasma is at rest

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem
electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities \rightarrow rest frame where the plasma is at rest
$\vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \quad$ invariant under Galilean transformation

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem
electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities \rightarrow rest frame where the plasma is at rest
$\vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \quad$ invariant under Galilean transformation
$\vec{E}^{\prime}=\vec{E}+\frac{\vec{u}}{c} \times \vec{B} \quad$ Lorentz transformation for $\mathrm{u} / c \ll 1$

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem

> electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities \rightarrow rest frame where the plasma is at rest
$\vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \quad$ invariant under Galilean transformation
$\vec{E}^{\prime}=\vec{E}+\frac{\vec{u}}{c} \times \vec{B} \quad$ Lorentz transformation for $\mathrm{u} / \mathrm{c} \ll 1$
Ampere law

$$
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}=\frac{4 \pi \sigma}{c}\left(\vec{E}+\frac{\vec{u}}{c} \times \vec{B}\right)
$$

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem

> electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities -> rest frame where the plasma is at rest
$\vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \quad$ invariant under Galilean transformation
$\vec{E}^{\prime}=\vec{E}+\frac{\vec{u}}{c} \times \vec{B} \quad$ Lorentz transformation for $\mathrm{u} / c \ll 1$
Ampere law

$$
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}=\frac{4 \pi \sigma}{c}\left(\vec{E}+\frac{\vec{u}}{c} \times \vec{B}\right)
$$

Faraday law

$$
\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial B}{\partial t}
$$

MHD equation for the magnetic field

Ohm's law: relates the electric current j to the other variables of the problem

> electric conductivity
$\vec{j}^{\prime}=\stackrel{\downarrow}{\sigma} \vec{E}^{\prime}=\vec{j} \quad$ primed quantities \rightarrow rest frame where the plasma is at rest
$\vec{j}=q\left(n_{i} \vec{u}_{i}-n_{e} \vec{u}_{e}\right)=q n_{i} \vec{v}_{e i} \quad$ invariant under Galilean transformation
$\vec{E}^{\prime}=\vec{E}+\frac{\vec{u}}{c} \times \vec{B} \quad$ Lorentz transformation for $\mathrm{u} / \mathrm{c} \ll 1$

Ampere law

$$
\begin{aligned}
\nabla \times \vec{B} & =\frac{4 \pi}{c} \vec{j}=\frac{4 \pi \sigma}{c}\left(\vec{E}+\frac{\vec{u}}{c} \times \vec{B}\right) \\
\rightarrow & 1 \partial \vec{B}
\end{aligned}
$$

Faraday law

$$
\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial B}{\partial t}
$$

MHD equation for the magnetic field

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})-\nabla \times\left(\frac{c^{2}}{4 \pi \sigma} \nabla \times \vec{B}\right)
$$

MHD equation for the magnetic field

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})-\nabla \times\left(\frac{c^{2}}{4 \pi \sigma} \nabla \times \vec{B}\right)
$$

using the vectorial identity $\nabla \times(\nabla \times \vec{B})=\nabla(\nabla \vec{B})-\nabla^{2} \vec{B} \quad$ and $\quad \nabla \vec{B}=0$

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})+\frac{c^{2}}{4 \pi \sigma} \nabla^{2} \vec{B}
$$

MHD equation for the magnetic field

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})-\nabla \times\left(\frac{c^{2}}{4 \pi \sigma} \nabla \times \vec{B}\right)
$$

using the vectorial identity $\nabla \times(\nabla \times \vec{B})=\nabla(\nabla \vec{B})-\nabla^{2} \vec{B} \quad$ and $\quad \nabla \vec{B}=0$

Mass, momentum, and energy

$$
\frac{\partial \varrho}{\partial t}+\nabla(\varrho \vec{u})=0
$$

Mass, momentum, and energy

Mass, momentum, and energy

$$
\begin{aligned}
& \square \frac{\partial \varrho}{\partial t}+\nabla(\varrho \vec{u})=0 \\
& \text { momentum } \varrho\left(\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}\right)=-\nabla P+\frac{1}{c} \vec{j} \times \vec{B} \\
& \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j} \longrightarrow \quad=-\nabla P+\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B}
\end{aligned}
$$

Mass, momentum, and energy

MHD equations

$$
\begin{aligned}
& \frac{\partial \varrho}{\partial t}+\nabla(\varrho \vec{u})=0 \\
& \varrho\left(\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}\right)=\nabla P+\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(P \varrho^{-\gamma}\right)=0 \\
& \frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})+\frac{c^{2}}{4 \pi \sigma} \nabla^{2} \vec{B}
\end{aligned}
$$

8 equations for 8 variables: $\varrho \quad P \quad \vec{u} \quad \vec{B}$
we got rid of \vec{E} and \vec{j} !

Ideal MHD equations

$$
\begin{aligned}
& \frac{\partial \varrho}{\partial t}+\nabla(\varrho \vec{u})=0 \\
& \varrho\left(\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}\right)=\nabla P+\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(P \varrho^{-\gamma}\right)=0 \\
& \frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{u} \times \vec{B})+\frac{c^{2}}{4 \pi} \boldsymbol{Z}^{2} \vec{B}
\end{aligned}
$$

under most astrophysical conditions

$$
T_{d} \approx \frac{L^{2}}{\eta} \longrightarrow \infty
$$

Magnetic flux freezing

Magnetic flux freezing

Magnetic flux freezing

$$
\begin{aligned}
& \mathrm{d} l \overbrace{\mathrm{n}_{1}}^{\mathrm{S}_{1}} \overbrace{\boldsymbol{t}}^{\boldsymbol{n _ { 2 }}} \\
& \Phi_{2}=\int_{S_{2}}^{\boldsymbol{v}} \vec{B}(\vec{x}+\vec{v} \Delta t, t+\Delta t) \cdot \mathrm{d} \vec{S}_{2}
\end{aligned}
$$

Magnetic flux freezing

$$
\Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1}
$$

$$
\Phi_{2}=\int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t+\Delta t) \cdot \mathrm{d} \vec{S}_{2}
$$

$$
\approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{2}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}
$$

Magnetic flux freezing

$$
\Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1}
$$

$$
\begin{aligned}
\boldsymbol{t} \quad{ }_{2}^{t+\Delta t} & =\int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t+\Delta t) \cdot \mathrm{d} \vec{S}_{2} \quad \begin{array}{c}
\text { S2 differs from } S_{1} \text { by } \\
\text { terms of order } \Delta t
\end{array} \\
& \approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{\varkappa_{1}}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{\Psi 1} 1
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \mathrm{d} l \overbrace{\prod_{\mathrm{n}_{1}} S_{3}}^{\mathrm{S}_{1}} \prod_{\mathrm{n}_{2}}^{v} \Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1} \\
& \Phi_{2} \approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{1}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{1}
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \mathrm{d} l \overbrace{\prod_{\mathrm{n}_{1}} S_{3} \bigcap_{\mathrm{n}_{2}}^{\mathrm{s}_{1}}}^{\mathrm{S}_{2}} \Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1} \\
& \Phi_{2} \approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{1}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{1}
\end{aligned}
$$

Gauss theorem

$$
\oint \vec{B} \cdot \mathrm{~d} \vec{S}_{t o t}=\int \nabla \cdot \vec{B} \mathrm{~d} V=0
$$

Magnetic flux freezing

$$
\Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1}
$$

$$
\Phi_{2} \approx \int_{S_{2}}^{\boldsymbol{t}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{1}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{1}
$$

Gauss theorem

$$
-\int_{S_{1}} \vec{B} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{2}} \vec{B} \cdot \mathrm{~d} \vec{S}_{2}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3}=\oint \vec{B} \cdot \mathrm{~d} \vec{S}_{t o t}^{\text {Gauss theorem }}=\int^{\nabla} \nabla \cdot \vec{B} \mathrm{~d} V=0
$$

Magnetic flux freezing

$$
\Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1}
$$

$t \begin{aligned} t+\Delta t\end{aligned}$
$\Phi_{2} \approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{1}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{1}$

$$
-\int_{S_{1}} \vec{B} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{2}} \vec{B} \cdot \mathrm{~d} \vec{S}_{2}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3}=\oint \vec{B} \cdot \mathrm{~d} \vec{S}_{t o t}^{\text {Gauss theorem }}=\int^{\nabla} \nabla \cdot \vec{B} \mathrm{~d} V=0
$$

Magnetic flux freezing

$$
\Phi_{1}=\int_{S_{1}} \vec{B}(\vec{x}, t) \cdot \mathrm{d} \vec{S}_{1}
$$

$t \quad t+\Delta t$
$\Phi_{2} \approx \int_{S_{2}} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{2}+\Delta t \int_{S_{1}} \frac{\partial}{\partial t} \vec{B}(\vec{x}+\vec{v} \Delta t, t) \cdot \mathrm{d} \vec{S}_{1}$
$-\int_{S_{1}} \vec{B} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{2}} \vec{B} \cdot \mathrm{~d} \vec{S}_{2}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3}=\oint \vec{B} \cdot \mathrm{~d} \vec{S}_{t o t}^{\text {Gauss theorem }}=\int^{\nabla} \nabla \cdot \vec{B} \mathrm{~d} V=0$

$$
\Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3}
$$

Magnetic flux freezing

$$
\Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3}
$$

Magnetic flux freezing

$$
\Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{gathered}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{gathered}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{array}{c}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{array} \\
& =-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\Delta t \int_{S_{3}} \vec{B} \cdot(\mathrm{~d} \vec{x} \times \vec{v})
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{array}{l}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{array} \\
& =-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\Delta t \int_{S_{3}} \vec{B} \cdot(\mathrm{~d} \vec{x} \times \vec{v}) \\
& \quad=-\Delta t\left[\int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}-\oint_{S_{1}} \mathrm{~d} \vec{x} \cdot(\vec{v} \times \vec{B})\right]
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{array}{c}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{array} \\
& =-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\Delta t \int_{S_{3}} \vec{B} \cdot(\mathrm{~d} \vec{x} \times \vec{v}) \\
& \quad=-\Delta t\left[\int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}-\oint_{S_{1}} \mathrm{~d} \vec{x} \cdot(\vec{v} \times \vec{B})\right]_{\text {curl theorem }} \\
& \quad=-\Delta t\left[\int_{S_{1}}\left(\frac{\partial \vec{B}}{\partial t}-\nabla \times(\vec{v} \times \vec{B})\right) \cdot \mathrm{d} \vec{S}_{1}\right]
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{array}{c}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{array} \\
& =-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\Delta t \int_{S_{3}} \vec{B} \cdot(\mathrm{~d} \vec{x} \times \vec{v}) \\
& \quad=-\Delta t\left[\int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}-\oint_{S_{1}} \mathrm{~d} \vec{x} \cdot(\vec{v} \times \vec{B})\right] \quad \text { curl theorem } \\
& =-\Delta t\left[\int_{S_{1}}\left(\frac{\partial \vec{B}}{\partial t}-\nabla \times(\vec{v} \times \vec{B})\right) \cdot \mathrm{d} \vec{S}_{1}\right]=0
\end{aligned}
$$

Magnetic flux freezing

$$
\begin{aligned}
& \Phi_{1}-\Phi_{2}=-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\int_{S_{3}} \vec{B} \cdot \mathrm{~d} \vec{S}_{3} \begin{array}{c}
\mathrm{d} \vec{S}_{3}=\mathrm{d} \vec{x} \times \vec{v} \Delta t \\
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})
\end{array} \\
& =-\Delta t \int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}+\Delta t \int_{S_{3}} \vec{B} \cdot(\mathrm{~d} \vec{x} \times \vec{v}) \\
& \quad=-\Delta t\left[\int_{S_{1}} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{S}_{1}-\oint_{S_{1}} \mathrm{~d} \vec{x} \cdot(\vec{v} \times \vec{B})\right] \\
& \quad=-\Delta t\left[\int_{S_{1}}\left(\frac{\partial \vec{B}}{\partial t}-\nabla \times(\vec{v} \times \vec{B})\right) \cdot \mathrm{d} \vec{S}_{1}\right]=0
\end{aligned}
$$

the magnetic flux is constant across a surface moving with the plasma! Magnetic flux freezing \rightarrow B-field line move with the plasma

Magnetic flux freezing: examples

Magnetic flux freezing: examples

magnetic flux $\Phi=B R^{2}$
gas density ϱ

Magnetic flux freezing: examples

$\Phi=B R^{2} \longrightarrow B R^{2}$

$\varrho \longrightarrow a \varrho$
B-field $B \longrightarrow B$

Magnetic flux freezing: examples

magnetic flux

B-field

$$
\begin{aligned}
B & \longrightarrow B \\
\frac{B}{\varrho^{n}} & =\text { const }
\end{aligned}
$$

in general:

- $n=0 \rightarrow$ parallel contraction/expansion
- $n=1 \rightarrow$ perpendicular contraction/expansion
- $n=2 / 3 \rightarrow$ isotropic contraction or expansion

Magnetic pressure and tension

Lorentz force $F_{L}=\frac{1}{c} \vec{j} \times \vec{B}$

Magnetic pressure and tension

Lorentz force $\quad F_{L}=\frac{1}{c} \vec{j} \times \vec{B}=\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B}$
Ampere law $\quad \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}$

Magnetic pressure and tension

Lorentz force $\quad F_{L}=\frac{1}{c} \vec{j} \times \vec{B}=\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B}$
Ampere law $\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}$

$$
F_{L}=\frac{1}{4 \pi}(\vec{B} \cdot \nabla) \vec{B}-\nabla\left(\frac{\vec{B}^{2}}{8 \pi}\right)
$$

Magnetic pressure and tension

Lorentz force $F_{L}=\frac{1}{c} \vec{j} \times \vec{B}=\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B}$
Ampere law $\quad \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}$
magnetic tension

Magnetic pressure and tension

Lorentz force $\quad F_{L}=\frac{1}{c} \vec{j} \times \vec{B}=\frac{1}{4 \pi}(\nabla \times \vec{B}) \times \vec{B}$
Ampere law $\quad \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}$

Alfven waves

$$
\vec{u}=0
$$

- displace a fluid element orthogonally to B_{0}

Alfven waves

$$
\vec{u}=0
$$

- displace a fluid element orthogonally to B_{0}
- the field is bent by plasma motion (freezing)
\rightarrow work is needed to bend B
kinetic energy
field line bending

Alfven waves

$\vec{u}=0$

- displace a fluid element orthogonally to B_{0}
- the field is bent by plasma motion (freezing) -> work is needed to bend B
- magnetic tension will push the plasma back into motion

Alfven speed

Alfven waves propagate along magnetic field lines like waves on a string

$$
c_{W}^{2}=\frac{\text { tension }}{\text { linear density }} \longrightarrow v_{A}^{2}=\frac{B^{2} / 4 \pi L}{\varrho_{i} / L}
$$

Alfven speed

Alfven waves propagate along magnetic field lines like waves on a string

$$
c_{W}^{2}=\frac{\text { tension }}{\text { linear density }} \longrightarrow v_{A}^{2}=\frac{B^{2} / 4 \pi L}{\varrho_{i} / L}
$$

in the ISM: $\quad v_{A}=\frac{B}{\sqrt{4 \pi \varrho_{i}}}=20\left(\frac{B}{3 \mu \mathrm{G}}\right)\left(\frac{n_{i}}{0.1 \mathrm{~cm}^{-3}}\right)^{-1 / 2} \mathrm{~km} / \mathrm{s}$

Alfven speed

Alfven waves propagate along magnetic field lines like waves on a string

$$
c_{W}^{2}=\frac{\text { tension }}{\text { linear density }} \longrightarrow v_{A}^{2}=\frac{B^{2} / 4 \pi L}{\varrho_{i} / L}
$$

in the ISM: $\quad v_{A}=\frac{B}{\sqrt{4 \pi \varrho_{i}}}=20\left(\frac{B}{3 \mu \mathrm{G}}\right)\left(\frac{n_{i}}{0.1 \mathrm{~cm}^{-3}}\right)^{-1 / 2} \mathrm{~km} / \mathrm{s}$
$v_{A} \ll v_{S N R} \quad$ SNR shocks are super-Alfvenic
$v_{A} \ll c \quad$ cosmic rays "see" Alfven waves at rest

Alfven speed

Alfven waves propagate along magnetic field lines like waves on a string

$$
c_{W}^{2}=\frac{\text { tension }}{\text { linear density }} \longrightarrow v_{A}^{2}=\frac{B^{2} / 4 \pi L}{\varrho_{i} / L}
$$

in the ISM: $\quad v_{A}=\frac{B}{\sqrt{4 \pi \varrho_{i}}}=20\left(\frac{B}{3 \mu \mathrm{G}}\right)\left(\frac{n_{i}}{0.1 \mathrm{~cm}^{-3}}\right)^{-1 / 2} \mathrm{~km} / \mathrm{s}$
$v_{A} \ll v_{S N R} \quad$ SNR shocks are super-Alfvenic
$v_{A} \ll c \quad$ cosmic rays "see" Alfven waves at res \dagger

$$
\omega=k_{\|}^{\swarrow} v_{A}^{\text {component of wave vector } k \text { along } B_{0}}
$$

dispersion relation

[^0]: * implicit assumption: the energy of the electron does not change during one gyration around the B-field

