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Outline

Observational evidences for the presence of magnetic 

fields: synchrotron radiation  

Plasma physics: basics of MagnetoHydroDynamics (MHD) 

MHD waves: Alfven waves 
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Beaming
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Figuw 4.3 
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Relativistic beaming of mdiation emitted isotmpically in the rest 

4. Doppler Effect 

We have seen that any periodic phenomenon in the moving frame K’ will 
appear to have a longer period by a factor y when viewed by local 
observers in frame K. If, on the other hand, we measure the arrival times of 
pulses or other indications of the periodic phenomenon that propagate 
with the velocity of light, then there will be an additional effect on the 
observed period due to the delay times for light propagation. The joint 
effect is called the Doppler effect. 

In the rest frame of the observer K imagine that the moving source 
emits one period of radiation as it moves from point 1 to point 2 at 
velocity u. If the frequency of the radiation in the rest frame of the source 
is o’ then the time taken to move from point 1 to point 2 in the observer’s 
frame is given by the time-dilation effect: 

Now consider Fig. 4.4 and note I =  o h t  and d =  v At cose. The difference in 
arrival times AtA of the radiation emitted at 1 and 2 is equal to At minus 
the time taken for radiation to propagate a distance d. Thus we have 

Therefore, the observed frequency w will be 

277 w’ w= - = (4.1 1) 

This is the relativistic Doppler formula. The factor y - ’  is purely a 
relativistic effect, whereas the 1 -(u/c)cosB factor appears even classi- 
cally. One distinction between the classical and relativistic points of view 
should be mentioned, however. The classical Doppler effect (say, for sound 

# ⇠ 1

�

the radiation emitted by a relativistic particle is concentrated within a cone of 
opening angle 1/γ entered along the particle velocity
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Figurn 6.2 Emission cones at variouS points of an accelerated particle's 
trajectory. 

the direction of observation. The distance As along the path can be 
computed from the radius of curvature of the path, a = As/AB. 

From the geometry we have A0 = 2/y,  so that As = 2 a / y .  But the radius 
of curvature of the path follows from the equation of motion 

AV 4 ym-  = - v x B ,  
A t  c 

Since (Av( = v A 0  and As = v At, we have 

A 0  qBsina 
As ymcv ' 

wB sin a ' 

-=- 

V a = -  

(6.8a) 

(6.8b) 

Note that this differs by a factor sina from the radius of the circle of the 
projected motion in a plane normal to the field. Thus A s  is given by 

2u 
yw, sin a 

As = (6.8~) 

The times t, and t, at which the particle passes points 1 and 2 are such 
that A s  = u(t,  - t , )  so that 

2 
y o B  sin a ' 

t , -  t ,x 

Let t f  and tt be the arrival times of radiation at the point of observation 
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Synchrotron emission from the Milky Way
radio domain

radio telescopes

A. E. Guzmán et al.: 45 MHz all-sky map and 45–408 MHz spectral index

Fig. 3. Multi-frequency spectra of the Galactic component for (from top
to bottom): south Galactic Pole, North Galactic Pole, and minimum-
south zones. The triangles are not considered in the least squares fitting
of the line. The squares represent the 45 and 408 MHz data.

Fig. 4. Multi-frequency spectra of the Galactic component for the (from
top to bottom) minimum-north, calibration point and anticenter zones.
The triangles are not considered on the least squares fitting of the line.
The squares represent the 45 and 408 MHz data.

Fig. 5. Minimum-South zone, Plate-Careé projection and five equi-
spaced contours between 3615 and 3870 K. No extragalactic correction
applied. The source seen next to the contours is Fornax A.

multifrequency spectral index, and the difference between these
last two columns (∆β = βextra_corr

multifreq − β
extra_corr
45−408 ).

We now explain the quantitative criterion used to evaluate
the quality of the fits: having seen that extragalactic-corrected
multi-frequency spectra are well fitted by single power laws, as
expected if we observe non-thermal synchrotron radiation, we
determine zero-level corrections (ZLC) to the 45 and 408 MHz
maps such that, when applied uniformly to the six zones, they
maximize the sum of the squares of the linear correlation coeffi-
cients of the six linear fits.

To summarize, reliable Galactic spectral indices between the
45 and 408 MHz can be derived by applying the ENTS, CMB
and the ZLC corrections to both surveys. Table 5 displays all of
these corrections. Table 6 shows the 45–408 MHz spectral index
corrected values (corrected for ENTS, CMB, and ZLC) and the
differences between these corrected temperatures and the multi-
frequency fit (Tfit). These spectral indices and the map derived
represent our best estimates of the Galactic temperature spectral
index between these two frequencies.

The isotropic corrections (Tν,0 = TCMB + Tν,Ex + Tν,ZLC in
Eq. (2)) are

T45,0 = 550 K and T408,0 = 1.6 K. (4)

Figure 6 shows the final spectral index map.
There are several considerations to take into account con-

cerning the multifrequency spectrum procedure:

– The different resolutions of the data. When comparing dif-
ferent surveys, we really should adopt a common resolution,
which we do not here. However, apart from the systematic
errors in the measured temperatures at low frequencies in
the minimum-south zone, as already explained, the multifre-
quency spectra show remarkable agreement between inde-
pendent measures and no significant departure from a single
power-law fit. Excluding the minimum-south zone, the zones
selected correspond to relatively extended and uniform areas

A138, page 5 of 10

power law spectra

the Milky Way is filled with magnetic 
field and relativistic electrons!
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if we observe a radio flux F = L/4πd2

at a given frequency

we can estimate a combination of K and B, but not the two quantities separately!!!

several ways to measure B exist, and they indicate B ~ 3 µG in the Milky Way 

⌫s = �2 qB

2⇡mc

Ee = 10 GeV �! ⌫s ⇠ 3 GHz

Ee = 100 TeV �! ⌫s ⇠ 1 keV

} radio

X-rays
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in the absence of other estimates, the assumption of equipartition 
is used to estimate a reference value for the magnetic field



The electromagnetic spectrum

visible light -> stars

interactions of cosmic ray protons with matter

thermal emission from hot plasmas (millions of K) 
synchrotron emission of 100 TeV electrons in a 3 µG field

}

21 cm line -> atomic neutral Hydrogen (HI) 
synchrotron emission of multi-GeV electrons in a 3 µG field

}
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Wikipedia: “Plasma is an electrically neutral medium of unbound positive and negative 

particles (i.e. the overall charge of a plasma is roughly zero)”.
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}
thermal equilibrium Te = Tp = T -> Boltzmann distribution
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generated in a convective region of L ~ 2 x 1010 cm 

average electron density ne ~ 1023 cm-3 

vei ⇡ 10�12cm/s
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for any practical purpose we can consider a 1-component plasma 
electrons and ions are fully coupled
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Magnetic flux freezing: examples

� = BR2magnetic flux

gas density % �! a%

B-field

R/a

�! BR2a�1

B �! aB

in general:
B

%n
= const

n = 0 —> parallel contraction/expansion 

n = 1 —> perpendicular contraction/expansion 

n = 2/3 —> isotropic contraction or expansion
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Alfven waves
~u = 0

the field is bent by plasma motion (freezing) 

-> work is needed to bend B

kinetic energy

field line bending

kinetic energy

displace a fluid element orthogonally to B0

magnetic tension will push the plasma back 

into motion

~B0�~u

WAVE MOTION
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Alfven speed
Alfven waves propagate along magnetic field lines like waves on a string

c2W =
tension

linear density
�! v2A =

B2/4⇡L

%i/L

in the ISM: vA =
Bp
4⇡%i

= 20
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◆⇣ ni

0.1 cm�3
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vA ⌧ vSNR

vA ⌧ c

SNR shocks are super-Alfvenic

cosmic rays “see” Alfven waves at rest

dispersion relation ! = kkvA

component of wave vector k along B0


