NPAC course on Astroparticles

VI - PARTICLE ACCELERATION: DIFFUSIVE SHOCK ACCELERATION

Particle acceleration

Static electric field ->
Ohm's law

Static magnetic field ->

Particle acceleration

Static electric field ->

Ohm's law

Static magnetic field ->

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

no work done on the particle

$$
\begin{array}{ll}
\text { Induced E-field } \rightarrow & \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\text { Moving B-field }-> & \vec{E}=-\frac{1}{c} \vec{v} \times \vec{B}
\end{array}
$$

Fermi's idea $(1949,1954)$

* primed quantities are measured in the rest frame of the cloud

Energy gain (loss) per interaction

$$
E^{\prime}=\gamma_{v}\left(E-v p \cos \left(\vartheta_{i n}\right)\right)
$$

* primed quantities are measured in the rest frame of the cloud

Energy gain (loss) per interaction

$$
\frac{\Delta E}{E}=\beta\left[\cos \left(\vartheta_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \cos \left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

Energy gain (loss) per interaction

$$
\frac{\Delta E}{E}=\beta\left[\cos \left(\vartheta_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \cos \left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

head-on collision

before:

after:

$$
\frac{\Delta E}{E}=2 \beta(1+\beta)
$$

Energy gain (loss) per interaction

$$
\frac{\Delta E}{E}=\beta\left[\cos \left(\vartheta_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \cos \left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

head-on collision

before:
 after:

$$
\frac{\Delta E}{E}=2 \beta(1+\beta)
$$

tail-on collision
before:

after:

Average energy gain

$$
\frac{\Delta E}{E}=\beta\left[\cos \left(\vartheta_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \cos \left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

Average energy gain

$$
\frac{\Delta E}{E}=\beta\left[\cos \left(\vartheta_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \cos \left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

isotropy of particles in the cloud frame

$$
\cdots\left\langle\cos \left(\vartheta_{\text {out }}^{\prime}\right)\right\rangle=0
$$

\# particles between $\vartheta_{i n}$ and $\vartheta_{i n}+\mathrm{d} \vartheta_{i n} \quad--->\propto \sin \left(\vartheta_{i n}\right) \mathrm{d} \vartheta_{i n}$
rate at which particles enter the cloud prop. to ---> $\propto 1-\beta \cos \left(\vartheta_{i n}\right)$

Average energy gain

$$
\left.\frac{\Delta E}{E}=\beta\left[\cos / \psi_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \operatorname{ros}\left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

isotropy of particles in the cloud frame

$$
\cdots\left\langle\cos \left(\vartheta_{\text {out }}^{\prime}\right)\right\rangle=0
$$

\# particles between $\vartheta_{i n}$ and $\vartheta_{i n}+\mathrm{d} \vartheta_{i n} \quad--->\propto \sin \left(\vartheta_{i n}\right) \mathrm{d} \vartheta_{i n}$
rate at which particles enter the cloud prop. to ---> $\propto 1-\beta \cos \left(\vartheta_{i n}\right)$

Average energy gain

$$
\left.\frac{\Delta E}{E}=\beta\left[\cos / \psi_{\text {out }}^{\prime}\right)-\cos \left(\vartheta_{\text {in }}\right)\right]+\beta^{2}\left[1-\cos \left(\vartheta_{\text {in }}\right) \operatorname{ros}\left(\vartheta_{\text {out }}^{\prime}\right)\right]
$$

isotropy of particles in the cloud frame

$$
\cdots\left\langle\cos \left(\vartheta_{\text {out }}^{\prime}\right)\right\rangle=0
$$

\# particles between $\vartheta_{i n}$ and $\vartheta_{i n}+\mathrm{d} \vartheta_{i n} \quad--->\propto \sin \left(\vartheta_{i n}\right) \mathrm{d} \vartheta_{i n}$
rate at which particles enter the cloud prop. to ---> $\propto 1-\beta \cos \left(\vartheta_{\text {in }}\right)$

$$
\left\langle\cos \left(\vartheta_{i n}\right\rangle=-\frac{\beta}{3}\right.
$$

Second order Fermi mechanism

$$
\left\langle\frac{\Delta E}{E}\right\rangle \approx \frac{4}{3} \beta^{2}
$$

Second order Fermi mechanism

$\left\langle\frac{\Delta E}{E}\right\rangle \approx \frac{4}{3}$

inefficient -> too slow...

A very simple idea

head-on collision

tail-on collision

$\bigcirc \longrightarrow$

A very simple idea

head-on collision

head-on collision

A very simple idea

head-on collision
head-on collision
$O \longrightarrow$

First order Fermi mechanism

First order Fermi mechanism

$$
\begin{gathered}
\begin{array}{c}
\text { averages have to be } \\
\text { performed over the inter }
\end{array} \\
0<\vartheta<\frac{\pi}{2}
\end{gathered}
$$

First order Fermi mechanism

averages have to be

$$
0<\vartheta<\frac{\pi}{2}
$$

First order!

$$
\left\langle\frac{\Delta E}{E}\right\rangle \approx \frac{4}{3} \beta
$$

Shock waves in one slide
 Shock rest frame

Shock waves in one slide Shock rest frame

$$
\frac{\varrho_{2}}{\varrho_{1}}=\frac{u_{1}}{u_{2}}=\frac{\gamma+1}{\gamma-1}=4 \quad p_{2}=\frac{2}{\gamma+1} \varrho_{1} u_{1}^{2}
$$

Up-stream
Down-stream
Shock
In 1960 (!) F. Hoyle (first?) suggests that shocks accelerate CRs

Diffusive Shock Acceleration

Shock rest frame

Krymskii 1977, Axford et al. 1977, Blandford \& Ostriker 1978, Bell 1978

Diffusive Shock Acceleration

Up-stream rest frame

$$
E_{a}=E_{b}
$$

Up-stream
$u_{1}-u_{2}$

Down-stream

Shock

Diffusive Shock Acceleration

Down-stream rest frame

Diffusive Shock Acceleration

Symmetry

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity $u_{1}-u_{2}$

Diffusive Shock Acceleration

Symmetry

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity $\mathrm{u}_{1}-\mathrm{u}_{2}$

Asymmetry

(Infinite and plane shock:) Upstream particles always return the shock, while downstream particles may be advected and never come back to the shock

Universality
 of diffusive shock acceleration

Let's search for a test-particle solution
Assumption: scattering is so effective at shocks that the distribution of particles is isotropic
-> an universal solution of the problem can be found

Rate at which particles cross the shock

Let's calculate Rin...

$n \rightarrow$ density of accelerated particles close to the shock
n is isotropic: $\mathrm{d} n=\frac{n}{4 \pi} \mathrm{~d} \Omega$
velocity across the shock: $c \cos (\theta)$

Rate at which particles cross the shock

Let's calculate Rin...

n-> density of accelerated particles close to the shock

n is isotropic: $\mathrm{d} n=\frac{n}{4 \pi} \mathrm{~d} \Omega$
velocity across the shock: $c \cos (\theta)$

$$
R_{\text {in }}=\int_{u p \rightarrow \text { down }} \mathrm{d} n c \cos (\theta)
$$

Rate at which particles cross the shock

Let's calculate Rin...

$n->$ density of accelerated particles close to the shock

n is isotropic: $\mathrm{d} n=\frac{n}{4 \pi} \mathrm{~d} \Omega$
velocity across the shock: $c \cos (\theta)$

DOWN

$$
R_{i n}=\int_{u p \rightarrow d o w n} \mathrm{~d} n c \cos (\theta)=\frac{n c}{4 \pi} \int_{0}^{\frac{\pi}{2}} \cos (\theta) \sin (\theta) \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \psi=\frac{1}{4} n c
$$

Rate at which particles cross the shock

Let's calculate Rin...

$n->$ density of accelerated particles close to the shock

n is isotropic: $\mathrm{d} n=\frac{n}{4 \pi} \mathrm{~d} \Omega$
velocity across the shock: $c \cos (\theta)$

$$
R_{i n}=\int_{u p \rightarrow d o w n} \mathrm{~d} n c \cos (\theta)=\frac{n c}{4 \pi} \int_{0}^{\frac{\pi}{2}} \cos (\theta) \sin (\theta) \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \psi=\frac{1}{4} n c
$$

-> the same result is obtained for down $->$ up

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

behavior of particles is diffusive $D(E)$-> diffusion coefficient
very poorly constrained (from
DOWN

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

behavior of particles is diffusive $D(E)$-> diffusion coefficient
very poorly constrained (from
DOWN
both observations and theory)
-> due to diffusion particles spread over

$$
l \approx \sqrt{D t}
$$

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

behavior of particles is diffusive $D(E)$-> diffusion coefficient
-> due to diffusion particles spread over
-> at the same time the shock moves

$$
\begin{aligned}
& l \approx \sqrt{D t} \\
& l=u_{1} t
\end{aligned}
$$

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

behavior of particles is diffusive $D(E)$-> diffusion coefficient
very poorly constrained (from
DOWN
both observations and theory)
-> due to diffusion particles spread over
-> at the same time the shock moves
$l \approx \sqrt{D t}$
$l=u_{1} t$

$$
l_{d} \approx \frac{D}{u_{1}}
$$

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

behavior of particles is diffusive $D(E)$-> diffusion coefficient
very poorly constrained (from
DOWN

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

DOWN
behavior of particles is diffusive $D(E)$-> diffusion coefficient
very poorly constrained (from
both observations and theory)
cosmic ray precursor $\rightarrow n \quad \sim$ constant up to $l_{d} \approx \frac{D}{u_{1}}$

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

DOWN

behavior of particles is diffusive

 $D(E)$-> diffusion coefficientvery poorly constrained (from
both observations and theory)
cosmic ray precursor $->n \sim$ constant up to $l_{d} \approx \frac{D}{u_{1}}$
residence time upstream $\rightarrow \tau_{u p}=\frac{N_{u p}}{R_{i n}}=\frac{n l_{d}}{\frac{1}{4} n c}=\frac{4 D}{u_{1} c}$

Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

DOWN

behavior of particles is diffusive

 $D(E)$-> diffusion coefficientvery poorly constrained (from both observations and theory)
cosmic ray precursor $->n \quad \sim$ constant up to $l_{d} \approx \frac{D}{u_{1}}$
residence time upstream $\rightarrow \tau_{u p}=\frac{N_{u p}}{R_{i n}}=\frac{n l_{d}}{\frac{1}{4} n c}=\frac{4 D}{u_{1} c}$

Residence time downstream
 - > a bit more subtle...

n is constant downstream of the shock

Residence time downstream

-> a bit more subtle...

n is constant downstream of the shock

$$
u_{2} \frac{\partial n}{\partial x}=D \frac{\partial^{2} n}{\partial x^{2}}+Q \delta\left(x-x_{0}\right) \quad n(0)=0
$$

Residence time downstream

-> a bit more subtle...

n is constant downstream of the shock

$$
u_{2} \frac{\partial n}{\partial x}=D \frac{\partial^{2} n}{\partial x^{2}}+Q \delta\left(x-x_{0}\right) \quad n(0)=0
$$

we need to know the returning flux

$$
\left.D \frac{\partial n}{\partial x}\right|_{x=0}
$$

Residence time downstream

-> a bit more subtle...

n is constant downstream of the shock

$$
u_{2} \frac{\partial n}{\partial x}=D \frac{\partial^{2} n}{\partial x^{2}}+Q \delta\left(x-x_{0}\right) \quad n(0)=0
$$

we need to know the returning flux

$$
\left.D \frac{\partial n}{\partial x}\right|_{x=0} \longrightarrow P_{r e t}=\frac{\left.D \frac{\partial n}{\partial x}\right|_{x=0}}{Q}
$$

Residence time downstream

-> a bit more subtle...

n is constant downstream of the shock

$$
u_{2} \frac{\partial n}{\partial x}=D \frac{\partial^{2} n}{\partial x^{2}}+Q \delta\left(x-x_{0}\right) \quad n(0)=0
$$

we need to know the returning flux

$$
\left.D \frac{\partial n}{\partial x}\right|_{x=0}
$$

$$
\longrightarrow P_{r e t}=\frac{\left.D \frac{\partial n}{\partial x}\right|_{x=0}}{Q}
$$

$$
P_{r e t}=\exp \left(-\frac{x_{0} u_{2}}{D}\right)
$$

Residence time downstream

number of downstream particles that will return to the shock:

$$
\int_{0}^{\infty} \mathrm{d} x P_{r e t}(x) n=\frac{D n}{u_{2}}
$$

Residence time downstream

number of downstream particles that will return to the shock:
$\int_{0}^{\infty} \mathrm{d} x P_{r e t}(x) n=\frac{D n}{u_{2}}$ same expression upstream!
mean residence time upstream $<->$ mean residence time downstream
$\frac{4 D}{u_{1} c} \quad \frac{4 D}{u_{2} c}$

Residence time downstream

number of downstream particles that will return to the shock:
$\int_{0}^{\infty} \mathrm{d} x P_{r e t}(x) n=\frac{D n}{u_{2}}$ same expression upstream!
mean residence time upstream $<->$ mean residence time downstream
$\frac{4 D}{u_{1} c} \quad \frac{4 D}{u_{2} c}$

Acceleration rate

Acceleration rate

Acceleration rate

Box model for shock acceleration

particles move up in energy

$$
r_{a c c}=\frac{u_{1}-u_{2}}{3 L}
$$

Box model for shock acceleration

particles move up in energy

$$
r_{a c c}=\frac{u_{1}-u_{2}}{3 L}
$$

particles exit the box downstream

$$
r_{e s c}=\frac{u_{2}}{L}
$$

Box model for shock acceleration

Universality
 of diffusive shock acceleration

Let's search for a test-particle solution
Assumption: scattering is so effective at shocks that the distribution of particles is isotropic
-> an universal solution of the problem can be found

Universality
 of diffusive shock acceleration

Let's search for a test-particle solution
Assumption: scattering is so effective at shocks that the distribution of particles is isotropic

- > an universal solution of the problem can be found

$$
\frac{1}{n(E)} \frac{\partial}{\partial E}(E n(E))=-1 \longrightarrow n(E) \propto E^{-2}
$$

Universality
 of diffusive shock acceleration

Let's search for a test-particle solution
Assumption: scattering is so effective at shocks that the distribution of particles is isotropic
-> an universal solution of the problem can be found

Bell's approach

Let's start with No particles of energy Eo...

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second: $n c / 4$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second: $n c / 4$
-> \# of particles leaving the system per second: $n u_{2}=n u_{1} / 4$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second: $\quad n c / 4$
-> \# of particles leaving the system per second: $n u_{2}=n u_{1} / 4$
-> Probability to leave the system per cycle: $\quad u_{1} / c$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second:

$$
n c / 4
$$

-> \# of particles leaving the system per second:
$n u_{2}=n u_{1} / 4$
-> Probability to leave the system per cycle:

$$
u_{1} / c
$$

-> Return probability to the shock per cycle: $\quad P_{R}=1-\frac{u_{1}}{c}$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second:

$$
n c / 4
$$

-> \# of particles leaving the system per second: $n u_{2}=n u_{1} / 4$
-> Probability to leave the system per cycle:

$$
u_{1} / c
$$

-> Return probability to the shock per cycle:
-> \# of particles performing at least k cycles:

$$
\begin{aligned}
& P_{R}=1-\frac{u_{1}}{c} \\
& N_{k}=N_{0}\left(1-\frac{u_{1}}{c}\right)^{k}
\end{aligned}
$$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second:

$$
n c / 4
$$

-> \# of particles leaving the system per second: $n u_{2}=n u_{1} / 4$
-> Probability to leave the system per cycle:

$$
u_{1} / c
$$

-> Return probability to the shock per cycle: $\quad P_{R}=1-\frac{u_{1}}{c}$
-> \# of particles performing at least k cycles: $\quad N_{k}=N_{0}\left(1-\frac{u_{1}}{c}\right)^{k}$
\rightarrow have an energy larger than: $E_{k}=E_{0}\left(1+\left\langle\frac{\Delta E}{E}\right\rangle\right)^{k}=E_{0}\left(1+\frac{u_{1}}{c}\right)^{k}$

Bell's approach

Let's start with No particles of energy Eo...
-> \# of particles starting a cycle per second:

$$
n c / 4
$$

-> \# of particles leaving the system per second: $n u_{2}=n u_{1} / 4$
-> Probability to leave the system per cycle:

$$
u_{1} / c
$$

-> Return probability to the shock per cycle: $\quad P_{R}=1-\frac{u_{1}}{c}$
-> \# of particles performing at least k cycles:

$$
N_{k}=N_{0}\left(1-\frac{u_{1}}{c}\right)^{\circledR}
$$

\rightarrow have an energy larger than: $E_{k}=E_{0}\left(1+\left\langle\frac{\Delta E}{E}\right\rangle\right)^{k}=E_{0}\left(1+\frac{u_{1}}{c}\right)^{k}$

Universal solution: Bell's approach

$$
\begin{aligned}
& \log \left(\frac{N}{N_{0}}\right)=k \log \left(1-\frac{u_{1}}{c}\right) \\
& \log \left(\frac{E}{E_{0}}\right)=k \log \left(1+\frac{u_{1}}{c}\right)
\end{aligned}
$$

Universal solution: Bell's approach

$$
\begin{aligned}
& \log \left(\frac{N}{N_{0}}\right)=k \log \left(1-\frac{u_{1}}{c}\right) \\
& \log \left(\frac{E}{E_{0}}\right)=k \log \left(1+\frac{u_{1}}{c}\right) \\
& N(>E)=N_{0}\left(\frac{E}{E_{0}}\right)^{\frac{\log \left(1-\frac{u_{1}}{c}\right)}{\log \left(1+\frac{u_{1}}{c}\right)}}
\end{aligned}
$$

Universal solution: Bell's approach

$$
\begin{aligned}
& \log \left(\frac{N}{N_{0}}\right)=k \log \left(1-\frac{u_{1}}{c}\right) \\
& \log \left(\frac{E}{E_{0}}\right)=k \log \left(1+\frac{u_{1}}{c}\right) \\
& N(>E)=N_{0}\left(\frac{E}{E_{0}}\right)^{\frac{\log \left(1-\frac{u_{1}}{c}\right)}{\log \left(1+\frac{u_{1}}{c}\right)}} \longrightarrow-1
\end{aligned}
$$

Universal solution: Bell's approach

$$
\begin{aligned}
& \log \left(\frac{N}{N_{0}}\right)=k \log \left(1-\frac{u_{1}}{c}\right) \\
& \log \left(\frac{E}{E_{0}}\right)=k \log \left(1+\frac{u_{1}}{c}\right) \\
& \quad N(>E)=N_{0}\left(\frac{E}{E_{0}}\right)^{\frac{\log }{\log \left(1-\frac{u_{1}}{c}\right.}} \boldsymbol{\operatorname { l o g } (1 + \frac { u _ { 1 } } { c })}
\end{aligned}
$$

$$
\frac{\mathrm{d} N(E)}{\mathrm{d} E} \propto E^{-2}
$$

Universal solution: Bell's approach

$$
\begin{gathered}
\log \left(\frac{N}{N_{0}}\right)=k \log \left(1-\frac{u_{1}}{c}\right) \\
\log \left(\frac{E}{E_{0}}\right)=k \log \left(1+\frac{u_{1}}{c}\right) \\
N(>E)=N_{0}\left(\frac{E}{E_{0}}\right)^{\frac{\log \left(1-\frac{u_{1}}{c}\right)}{\log \left(1+\frac{u_{1}}{c}\right)}} \longrightarrow-1 \\
\text { Independent on D !!! } \\
\frac{\mathrm{d} N(E)}{\mathrm{d} E} \propto E^{-2}
\end{gathered}
$$

Getting to the knee

$$
\tau_{a c c}=\frac{1}{r_{a c c}} \approx \frac{D(E)}{u^{2}}
$$

Getting to the knee

$$
\tau_{a c c}=\frac{1}{r_{a c c}} \approx \frac{D(E)}{u^{2}}
$$

maximum energy is given by:

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

Getting to the knee

$$
\tau_{a c c}=\frac{1}{r_{a c c}} \approx \frac{D(E)}{u^{2}}
$$

maximum energy is given by:

this depends on $D(E)$

Getting to the knee

$$
\tau_{a c c}=\frac{1}{r_{a c c}} \approx \frac{D(E)}{u^{2}}
$$

maximum energy is given by:

this depends on $D(E)$
which age?

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

-> SNR shocks do not decelerate until $\lesssim 1000 \mathrm{yr} \longrightarrow \tau_{\text {age }} \approx 1000 \mathrm{yr}$
wavelength
->ERs are scattered by resonant MHD waves

$$
\lambda \approx R_{L} \leftarrow \text { Larmor radius }
$$

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

-> SNR shocks do not decelerate until $\lesssim 1000 \mathrm{yr} \longrightarrow \tau_{\text {age }} \approx 1000 \mathrm{yr}$
wavelength
-> CRs are scattered by resonant MHD waves ${ }^{\star} \lambda \approx R_{L} \leftarrow$ Larmor radius

$$
D \approx l_{m f p} c \approx R_{L} c \propto \frac{E}{B}
$$

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

-> SNR shocks do not decelerate until $\lesssim 1000$ yr $\longrightarrow \tau_{\text {age }} \approx 1000 \mathrm{yr}$
wavelength
-> CRs are scattered by resonant MHD waves
$\lambda \approx R_{L} \leftarrow$ Larmor radius

$$
\begin{array}{r}
D \approx l_{m f p} c \approx R_{L} c \propto \frac{E}{B} \\
E_{\max } \approx B u^{2} \tau_{a g e}=B u R \approx 10^{14} \mathrm{eV}
\end{array}
$$

Getting to the knee

Lagage \& Cesarsky 1983

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

-> SNR shocks do not decelerate until $\lesssim 1000 \mathrm{yr} \longrightarrow \tau_{\text {age }} \approx 1000 \mathrm{yr}$
wavelength
-> CR are scattered by resonant MHD waves $\quad \lambda \approx R_{L} \leftarrow$ Larmor radius

$$
\begin{array}{r}
D \approx l_{m f p} c \approx R_{L} c \propto \frac{E}{B} \\
E_{\max } \approx B u^{2} \tau_{\text {age }}=B u R \approx 10^{14} \mathrm{eV}
\end{array}
$$

>10 times below the knee

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B u R
$$

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \backsim \text { the only way is to increase B }^{\circ}
$$

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \backsim R
$$

shock

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \backsim R
$$

Alfven speed

$$
V_{A}=\frac{B}{\sqrt{4 \pi \varrho}}
$$

shock

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \backsim R
$$

Alfven speed

$$
\begin{gathered}
V_{A}=\frac{B}{\sqrt{4 \pi \varrho}} \\
u_{s h} \gg V_{A}
\end{gathered}
$$

shock

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \backsim \text { the only way is to increase B }
$$

Alfven speed

$$
\begin{gathered}
V_{A}=\frac{B}{\sqrt{4 \pi \varrho}} \\
u_{s h} \gg V_{A}
\end{gathered}
$$

shock

How to solve the problem

horribly oversimplified, for a proper treatment see Bell 2004

$$
E_{\max } \approx B \cup R
$$

Alfven speed

$$
\begin{gathered}
V_{A}=\frac{B}{\sqrt{4 \pi \varrho}} \\
u_{s h} \gg V_{A}
\end{gathered}
$$

shock

-> CRs move with the shock -> faster than waves -> CR and waves strongly coupled -> V_{A} increases -> B increases!

Observational test: X-ray filaments

electrons

$$
\tau_{a c c}(E)=\tau_{a g e}
$$

Observational test: X-ray filaments

electrons

Observational test: X-ray filaments

electrons $\quad \tau_{\text {ace }}()^{1} / \tau_{\text {age }}$

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n}
$$

Observational test: X-ray filaments

electrons $\tau_{\text {ace }} / \tau_{\text {age }}$

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n} \approx E^{-1} B^{-2}
$$

Observational test: X-ray filaments

electrons $\quad \tau_{\text {ace }}\left(\frac{\tau_{\text {age }}}{}\right.$

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n} \approx E^{-1} B^{-2} \quad \longrightarrow E_{\max } \sim u_{s} B^{-1 / 2}
$$

Observational test: X-ray filaments

electrons $\quad \tau_{\text {acc }}\left(\stackrel{H}{=}=\tau_{\text {age }}\right.$

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n} \approx E^{-1} B^{-2} \quad \longrightarrow E_{\max } \sim u_{s} B^{-1 / 2}
$$

max energy of synchrotron photons -> $\quad E_{s y n} \sim E^{2} B^{2} \sim u_{s}^{2}$

Observational test: X-ray filaments

electrons $\quad \tau_{\text {acc }}\left(H=\tau_{\text {age }}\right.$

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n} \approx E^{-1} B^{-2} \quad \longrightarrow E_{\max } \sim u_{s} B^{-1 / 2}
$$

\max energy of synchrotron photons $->\quad E_{s y n} \sim E^{2} B^{2} \sim u_{s}^{2}$
depends on
velocity only!!!

Observational test: X-ray filaments

electrons

$$
\tau_{a c c} \sim \frac{D}{u_{s}^{2}}=\tau_{s y n} \approx E^{-1} B^{-2} \quad \longrightarrow E_{\max } \sim u_{s} B^{-1 / 2}
$$

max energy of synchrotron photons ->

$$
\begin{array}{r}
E_{s y n} \sim E^{2} B^{2} \sim u_{s}^{2} \\
\text { depends on } \\
\text { velocity only!!! }
\end{array}
$$

$$
u_{s} \approx 10^{3} \mathrm{~km} / \mathrm{s} \longrightarrow E_{s y n}^{\max } \approx 1 \mathrm{kev}
$$

X-rays!

Observational test: X-ray filaments

$$
\Delta l_{X} \sim \tau_{s y n} u_{2} \sim B^{-3 / 2}
$$

$B \sim$ hundreds of microGauss!

The supernova remnant paradigm: does it work?

diffusive transport of cosmic rays in the galaxy \rightarrow ISOTROPY
slope of the spectrum $\rightarrow E^{-2}$ is too hard!
what we see from gamma ray observations of SNRs seems to suggest that shock accelerate steeper spectra
theoreticians proposed tricks (modification of the diffusive shock acceleration
theory) to explain this
if magnetic field amplification operates at shocks (???) -> protons can be accelerated up to the knee ($\sim 10^{15} \mathrm{eV}$)
things we did not discuss: chemical composition, electrons, ...

