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Diffusive Shock Acceleration
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Krymskii 1977, Axford et al. 1977, Blandford & Ostriker 1978, Bell 1978
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Diffusive Shock Acceleration
Symmetry

u1 � u2 u1 � u2

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an 
head-on collision with a plasma moving with velocity u1-u2

Asymmetry

(Infinite and plane shock:) Upstream particles always return the shock, while 
downstream particles may be advected and never come back to the shock

Up-stream Down-stream



Universality  
of diffusive shock acceleration

Assumption: scattering is so effective at shocks that 
the distribution of particles is isotropic 

-> an universal solution of the problem can be found

Let’s search for a test-particle solution
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Residence time downstream
number of downstream particles that will return to the shock:

same expression upstream!
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ld ld
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Assumption: scattering is so effective at shocks that 
the distribution of particles is isotropic 

-> an universal solution of the problem can be found
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this depends 
on D(E)

which age?

details matter
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-> CRs are scattered by resonant MHD waves 

Getting to the knee

-> SNR shocks do not decelerate until 

Lagage & Cesarsky 1983

>10 times below 
the knee
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the only way is to increase B

cosmic rays

How to solve the problem

shock

-> CRs move with the shock -> faster than waves -> CR and waves strongly 
coupled -> VA increases -> B increases! 

↝↝↝
Alfven speed

horribly oversimplified, for a proper treatment see Bell 2004
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electrons ✘
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= ⌧syn ⇡ E�1B�2

max energy of synchrotron photons -> Esyn ⇠ E2B2 ⇠ u2
s

depends on 
velocity only!!!

u
s

⇡ 103km/s �! Emax

syn

⇡ 1kev X-rays!
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Observational test: X-ray filaments

SN 1006

�lX ⇠ ⌧synu2 ⇠ B�3/2

B ~ hundreds of microGauss !



The supernova remnant paradigm: 
does it work?

 diffusive transport of cosmic rays in the galaxy —> ISOTROPY 

 slope of the spectrum —> E-2 is too hard!  

 what we see from gamma ray observations of SNRs seems to suggest  that 

shock accelerate steeper spectra 

theoreticians proposed tricks (modification of the diffusive shock acceleration 

theory) to explain this 

 if magnetic field amplification operates at shocks (???) —> protons can be 

accelerated up to the knee (~1015 eV) 

 things we did not discuss: chemical composition, electrons, …


