Examination NPAC 2020–2021	From nuclei to stars: nuclear astrophysics
January 21 st 2021	N. de Séréville

Don't forget to check first the useful information at the end.

General considerations

- 1) Give some general characteristics of Globular Clusters.
- 2) Describe the stellar evolution up to their fate of a 2 M_{\odot} and 10 M_{\odot} star.
- 3) Give the lifetime of a 2 M_{\odot} and 10 M_{\odot} star.
- 4) Justify why Globular Clusters mostly contain low mass stars (remember that Globular Clusters are formed from the collapase of very large molecular clouds, and that *stars were born at the same time*).

<u>The ³⁰Si(p,γ)³¹P reaction</u>

Anomalies in elemental abundances have been observed in the red giant star population of Globular Clusters. In this context it has been shown that the ${}^{30}\text{Si}(p,\gamma){}^{31}\text{P}$ radiative capture destroying ${}^{30}\text{Si}$ in quiescent burning play an important role.

- 1) What are the two possible reaction mechanisms operating in the ${}^{30}Si(p,\gamma){}^{31}P$ radiative capture?
- 2) Calculate the *Q*-value of this reaction?
- 3) The ³⁰Si(p, γ)³¹P reaction operates at typical temperatures $T_6 = 100$ in red giant stars. Calculate the Gamow window properties (E_0 and ΔE).
- 4) What is the relevant excitation energy range in ³¹P for the ³⁰Si(p, γ)³¹P radiative capture?
- 5) Let's consider now the resonant capture mechanism. Based on your previous answer, what are the ³¹P states that could potentially play a role in the ³⁰Si(p, γ)³¹P reaction rate? Calculate the associated resonance energies in the center of mass.
- 6) Determine the relative orbital angular momentum forming the ³¹P states identified previously. What is the most likely contributing state to the ³⁰Si(p, γ)³¹P reaction rate? Justify.

Experimental approach

The ${}^{30}Si(p,\gamma){}^{31}P$ reaction rate can be computed as the sum of the contribution of individual resonances.

- 0) Give the complete formula of the resonance strength in case of the ${}^{30}Si(p,\gamma){}^{31}P$ reaction.
- 1) Indirect method
 - a) Justify why for low resonance energies (say $E_{c.m.} < 400$ keV) the proton width (Γ_p) is much smaller than the γ -ray partial width (Γ_γ). Write an approximate form of the resonance strength. What is the partial width that should be determined?
 - b) What kind of transfer reaction can you use to study the ${}^{30}Si(p,\gamma){}^{31}P$ reaction? What is the important parameter(s) extracted in such experimental approach? How is it linked to the proton width?
 - c) During an angular distribution measurement, an ³He¹⁺ beam of 500 nA impinges an enriched ³⁰Si target containing 5×10¹⁷ atoms/cm². Deuterons from the reaction are detected with a magnetic spectrometer having an acceptance corresponding to a detection efficiency of 9.6×10⁻⁴. At a detection angle of 10° the number of detected deuterons is 16200 during 3 hours. Calculate the number of incident ³He¹⁺ ions and the cross section of the ³⁰Si(³He,d)³¹P reaction in these conditions.

- 2) Direct method
 - a) The ³⁰Si(p, γ)³¹P reaction is also important in explosive events (type Ia supernova) where higher temperatures ($T_9 \approx 1 2$) are involved. Explain qualitatively why the resonances of interest in this context will have higher energies than in the previous case of red giant stars.
 - b) For energies greater than say $E_{c.m.} = 400$ keV direct measurements can be performed. Imagine an experimental setup for such measurement.

Useful information

- 1) **proton:** $J^{\pi} = 1/2^+$, m = 1.007825 u, Z = 1; ³⁰Si: $J^{\pi} = 0^+$, m = 29.973770 u, Z = 14; ³¹P: m = 30.973762 u, Z = 15; u = 931.494 MeV/c²
- 2) elementary charge: $q_{e-} = 1.6 \times 10^{-19}$ C; cross section unit: 1 mb = 10^{-24} cm²
- 3) Table of ³¹P excited states properties (energy and spin/parity) in the 7 MeV region.

E (level) [keV]	J^{π}
7158	
7214	1/2 ⁻ , 3/2 ⁻
7314	1/2+, 3/2+
7346	
7356	
7440	3/2+
7442	11/2+
7466	5/2-
7572	
7687	
7718	
7736	5/2 ⁻ , 7/2 ⁻