Examination NPAC 2021–2022	From nuclei to stars: nuclear astrophysics
February 9 th 2022	N. de Séréville

Don't forget to check first the useful information at the end.

General considerations

- 1) Which transformation occurs in hydrogen burning? What is the amount of energy released?
- 2) What are the two possible ways to burn hydrogen in stellar interiors?
- 3) Give a consequence of the competition between the pp chain and CNO cycle on stellar structure.
- 4) Describe briefly the classical novae phenomena where hydrogen is burnt explosively.

<u>The ³He(³He,2p)⁴He reaction</u>

The ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ reaction is the 3^{rd} reaction of the pp1 chain occuring in quiescent hydrogen burning. Its cross-section was measured at low energies at the LUNA laboratory using a ${}^{3}\text{He}{}^{+}$ beam with an intensity of 300 eµA. The beam impinged a ${}^{3}\text{He}$ target having a thickness of 3.9×10^{17} at/cm² and the two protons in the exit channel of the reaction were detected in time coincidence with 8 silicon detectors. The detection coincident efficiency determined from Monte-Carlo simulation was $\epsilon = 5.3$ %.

- 1) A total charge Q = 298 C was accumulated during 11.5 days at the center of mass energy of $E_{c.m.} = 24.36$ keV, and 278 coincident events were recorded.
 - a) Determine the number of incident ions.
 - b) Determine the reaction cross-section at this energy.
 - c) Determine the astrophysical *S*-factor at this energy.
- 2) Calculate the Gamow window properties (E_0 and ΔE) for the central temperature of the Sun, T = 15.6 MK.
- 3) The ³He(³He,2p)⁴He reaction is a non resonant reaction and its astrophysical *S*-factor, which varies smoothly with the energy, can be considered as constant in a good approximation.
 - a) What is the cross-section at the Gamow energy E_0 ?
 - b) What would have been the number of detected events at the Gamow energy E_0 with the same experimental conditions?
- 4) Calculate the thermonuclear rate of the ³He(³He,2p)⁴He reaction for the central temperature of the Sun.

<u>The ²⁵Al(p,γ)²⁶Si reaction</u>

Classical novae are powered by explosive hydrogen burning during which several γ -ray emitters such as ²⁶Al are produced. The quantity of ²⁶Al produced in such events depends crucially on the ²⁵Al(p, γ)²⁶Si reaction.

- 1) What are the two possible reaction mechanisms operating in the ${}^{25}Al(p,\gamma){}^{26}Si$ radiative capture?
- 2) Calculate the *Q*-value of this reaction?
- 3) The ²⁵Al(p, γ)²⁶Si reaction operates at typical temperatures T_6 = 350, corresponding to the following Gamow window properties (E_0 = 331 keV and ΔE = 230 keV).
 - a) What is the relevant excitation energy range in ${}^{26}Si$ for the ${}^{25}Al(p,\gamma){}^{26}Si$ radiative capture?
 - b) Let's consider now the resonant capture mechanism. Based on your previous answer, what are the ²⁶Si states that could potentially play a role in the ²⁵Al(p,γ)²⁶Si reaction rate? Calculate the associated resonance energies in the center of mass.

c) Determine the relative orbital angular momentum forming the ²⁶Si states identified previously. What is the most likely contributing state to the ²⁵Al(p,γ)²⁶Si reaction rate? Justify.

Useful information

- 1) ³He: $J^{\pi} = 1/2^+$, m = 3.016029 u, Z = 2; proton: $J^{\pi} = 1/2^+$, m = 1.007825 u, Z = 1; ²⁶Si: $J^{\pi} = 0^+$, m = 25.992333 u, Z = 14; ²⁵Al: $J^{\pi} = 5/2^+$, m = 24.990428 u, Z = 13; u = 931.494 MeV/c²
- 2) elementary charge: $q_{e_{-}} = 1.6 \times 10^{-19}$ C; cross section unit: 1 b = 10^{-24} cm²
- 3) Table of ²⁶Si excited states properties (energy and spin/parity) between 5.2 MeV and 6.4 MeV.

E (level) [keV]	J ^π
5289	4+
5518	(4+)
5676	1+
5890	0+
5929	3+
5946	0+
6101	
6295	2+
6383	(2+)