Master NPAC - Cosmology

February 5, 2019

Note 10% precision on numerical results is sufficient.

Useful quantities and formulae

- Present expansion rate: $H_{0}=100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \quad h=0.70 \pm 0.03$
- $\frac{c}{H_{0}}=2998 h^{-1} \mathrm{Mpc}=310^{22} \mathrm{~m}$
- $\frac{1}{H_{0}}=1.0 \times 10^{10} h^{-1} \mathrm{yr}=3 \times 10^{17} h^{-1} \mathrm{sec}$
- Present photon temperature: $k T_{\gamma}=2.3 \times 10^{-4} \mathrm{eV}$
- Present photon energy density: $\rho_{\gamma}=\left(\pi^{2} / 15\right) T_{\gamma}^{4}=0.26 \times 10^{6} \mathrm{eVm}^{-3}$
- Present photon number density: $n_{\gamma}=\left(2.4 / \pi^{2}\right) T_{\gamma}^{3}=4.09 \times 10^{8} \mathrm{~m}^{-3}$
- Present critical density: $\rho_{c 0}=3 H_{0}^{2} c^{2} /(8 \pi G)=1.0 \times 10^{10} h^{2} \mathrm{eV} \mathrm{m}^{-3}$
- Friedmann eqn.: $H^{2}=\frac{8 \pi G}{3} \rho-\frac{k}{a^{2}}=H_{0}^{2} \rho / \rho_{c 0}-\frac{k}{a^{2}}$
- Friedman for $\Lambda \mathrm{CDM}, z \ll 1000: H^{2} \sim H_{0}^{2}\left[\Omega_{\Lambda}+\Omega_{M}(1+z)^{3}+\Omega_{k}(1+z)^{2}\right]$
- conservation of energy for a fluid of equation of state $p=w \rho: \dot{\rho}+3 H(1+w) \rho=0$
- System of equations governing the dynamics of a scalar field in a FRW geometry:

$$
\begin{align*}
H^{2} & =\frac{1}{3 M_{\mathrm{Pl}}^{2}}\left(\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right) \tag{1}\\
\ddot{\phi}+3 H \dot{\phi}+V_{\phi} & =0 \tag{2}\\
\dot{H} & =-\frac{1}{2 M_{\mathrm{Pl}}^{2}} \dot{\phi}^{2} \tag{3}
\end{align*}
$$

where $V_{\phi}=\frac{d V}{d \phi}$ and $M_{\mathrm{Pl}}=1 / \sqrt{8 \pi G}$. For simplicity, we work in units in which $M_{\mathrm{Pl}}=1$.

- The energy density ρ and pressure P of the scalar field are given by

$$
\begin{align*}
\rho & =\frac{1}{2} \dot{\phi}^{2}+V(\phi) \tag{4}\\
P & =\frac{1}{2} \dot{\phi}^{2}-V(\phi) \tag{5}
\end{align*}
$$

- The slow roll parameters defined in lectures are (with $M_{\mathrm{PI}}=1$):

$$
\begin{equation*}
\epsilon_{V} \equiv \frac{1}{2}\left(\frac{V_{\phi}}{V}\right)^{2} \quad \eta_{V} \equiv \frac{V_{\phi \phi}}{V} \tag{6}
\end{equation*}
$$

- A different, and often more convenient set of slow-roll parameters (called the "Hubble" slow-roll parameters) are defined by

$$
\begin{align*}
\epsilon_{0} & \equiv H_{*} / H \tag{7}\\
\epsilon_{i+1} & =-\frac{d \ln \left|\epsilon_{i}\right|}{d N} \quad i \geq 0 \tag{8}
\end{align*}
$$

where H_{*} is the Hubble parameter at a chosen time (and hence a constant). The slow-roll parameter ϵ_{1} was also introduced in lectures.

- The number of e-folds before the end of inflation is defined by

$$
\begin{equation*}
N(t)=\ln \frac{a_{\text {end }}}{a(t)} \tag{9}
\end{equation*}
$$

where $a_{\text {end }}$ is the scale factor at the end of inflation.

Problem 1

Consider a flat universe with $H(z)=H_{0}=$ Cte. A galaxy at redshift z is observed.
(a) what is the present distance to the galaxy ?
(b) what was the distance to the galaxy when the photons we are now receiving were emitted?
(c) what was the flight time of these photons from the galaxy to us?

A supernova explodes in the galaxy and emits a total of N photons.
(d) for a flat universe, what is the area of the sphere centered on the supernova and intercepting our position?
(e) what is the number of photons detected by an observer on the sphere equipped with a detector of area A ?
(f) would the observer detect the same number of photons, more photons or fewer photons if the distance was the same, but $\Omega_{k}=1-\Omega_{\mathrm{tot}}>0$? Explain your answer.

Problem 2: Redshift Drift

An observer measures the redshift of a source at t_{0}. In this problem, we want to estimate by how much the source redshift has varied when we re-observe the same source at a time $t_{0}+\delta t_{0}$.
(a) write the expression of the redshift $z\left(t_{0}\right)$ as a function of the scale parameter a, the time of observation t_{0} and the time of emission t_{1}. Same question for $z\left(t_{0}+\delta t_{0}\right)$.
(b) Show that, at first order in δt, one can express the redshift variation $\delta z=z\left(t_{0}+\right.$ $\left.\delta t_{0}\right)-z\left(t_{o}\right)$ as a function of $H\left(t_{0}\right), \mathrm{H}\left(\mathrm{t}_{1}\right), t_{0}, t_{1}$ and a.
(c) The comoving coordinate of the source is constant (we neglect its peculiar velocity). There is therefore a simple relation between the time intervals δt_{0} and δt_{1}. Write this relation, and show that

$$
\begin{equation*}
\frac{d z}{d t_{0}}=H_{0} \times(1+z)-H(z) \tag{10}
\end{equation*}
$$

(d) Let's assume a flat, single component, Universe. The equation of state of this component is $p=w \rho$. Derive from the Friedmann equation the evolution of H as a function of z. Show that one can express $d z / d t_{0}$ as a function of H_{0}, z and w.
(e) Describe the evolution of z as a function of time. Do we always have $d z / d t_{0}>0$? If not, for which range of w do we observe an increase (resp. decrease) of z ?
(f) Assume you live in a flat matter-dominated Universe, with $H_{0}=68 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$. You observe a galaxy at $z=1$. How long do have to wait until you can detect a relative redshift variation of 10^{-5} ?
(g) Same question for a flat, vacuum-energy-dominated Universe.

Problem 3: Weakly Interacting Massive Particles

In this question you can, if you like, ignore uninteresting numerical factors $(2 \pi=1)$ and set $\hbar=c=1$ and $G=1 / m_{\text {planck }}^{2}$.
Consider a simple universe consisting of photons of number density n_{γ} and a massive spin $1 / 2$ fermion, χ, of mass m_{χ} and number density n_{χ}. Besides elastic scattering and bremstrahlung, the only permitted reactions are $\chi \chi \leftrightarrow \gamma \gamma$ (χ 's and photons are their own antiparticles). The number densities, n_{χ} and n_{γ}, will take on thermal values at the temperature, T if the forward and backwards rates for $\chi \chi \leftrightarrow \gamma \gamma$ are greater than the expansion rate, $H(T)$.
(a) Write an expression for the expansion rate as a function of the temperature for $T \gg m_{\chi}$ and for $T \ll m_{\chi}$, and assuming that photons and χ are in thermal equilibrium. Assume that only relativistic species contribute to the energy density.
(b) Write an expression for the annhilation rate, Γ_{χ}, of χ, i.e. the reciprocal of the mean time before a χ finds another χ and annihilates. The expression should depend on the number density and on the annihilation cross-section times velocity, σv (assumed velocity- and temperature independent as is often the case for exothermal reactions).
(c) Consider a temperature $T>m_{\chi}$. Suppose that the χ are in thermal equilibrium so that $n_{\chi} \sim T^{3}$. How large must σv be for the annhilation rate to be greater than the expansion rate.
(d) Suppose that the conditions from (c) are satisfied. As the temperature drops below m_{χ} the number density of χ drops below that of the photons which now dominate the energy density. As n_{χ} falls, the annhilation rate falls. The decoupling temperature, $T_{\text {dec }}$ is defined as the temperature where $\Gamma_{\chi}\left(T_{\text {dec }}\right)=H\left(T_{\text {dec }}\right)$ and we write $T_{\text {dec }}=$ βm_{χ}, where $\beta<1$ is a numerical factor that we will estimate shortly. By setting the annihilation rate equal to the expansion rate, estimate the number density $n_{\chi}\left(T_{\text {dec }}\right)$ as a function of $\sigma v, m_{\chi}$, and β. (Hint: you do not need an explicit form for $n_{\chi}(T)$ to do this.)
(e) What is the χ-photon ratio, n_{χ} / n_{γ} at decoupling as a function of $\sigma v, m_{\chi}$ and β ?
(f) Assuming that there are no annihilation after $T_{\text {dec }}$, what is the present value of n_{χ} / n_{γ}.
(g) What is the present value of ρ_{χ}
(h) At what temperature does the universe become matter dominated?
(i) (Just to test your mathematical dexterity). For $T<m_{\chi}$, the equilibrium number of χ is given by $n_{\chi}=2\left(T m_{\chi} / 2 \pi\right)^{3 / 2} \exp \left(-m_{\chi} / T\right)$. Find an expression for β that depends on σv and on $\log \beta$. For a given σv, this expression can be solved iteratively for β.

