
Master NPAC – Cosmology

February 5, 2019

Note 10% precision on numerical results is sufficient.

Useful quantities and formulae

• Present expansion rate: H0 = 100h km s−1Mpc−1 h = 0.70± 0.03

• c
H0

= 2998h−1Mpc = 3 1022m

• 1
H0

= 1.0× 1010h−1yr = 3× 1017h−1sec

• Present photon temperature: kTγ = 2.3× 10−4eV

• Present photon energy density: ργ = (π2/15)T 4
γ = 0.26× 106 eVm−3

• Present photon number density: nγ = (2.4/π2)T 3
γ = 4.09× 108m−3

• Present critical density: ρc0 = 3H2
0c

2/(8πG) = 1.0× 1010h2 eV m−3

• Friedmann eqn.: H2 = 8πG
3
ρ− k

a2
= H2

0ρ/ρc0 − k
a2

• Friedman for ΛCDM, z � 1000: H2 ∼ H2
0 [ΩΛ + ΩM(1 + z)3 + Ωk(1 + z)2]

• conservation of energy for a fluid of equation of state p = wρ: ρ̇+ 3H(1 + w)ρ = 0

• System of equations governing the dynamics of a scalar field in a FRW geometry:

H2 =
1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
(1)

φ̈+ 3Hφ̇+ Vφ = 0 (2)

Ḣ = − 1

2M2
Pl

φ̇2 (3)

where Vφ = dV
dφ

and MPl = 1/
√

8πG. For simplicity, we work in units in which
MPl = 1.

• The energy density ρ and pressure P of the scalar field are given by

ρ =
1

2
φ̇2 + V (φ) (4)

P =
1

2
φ̇2 − V (φ) (5)
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• The slow roll parameters defined in lectures are (with MPl = 1):

εV ≡
1

2

(
Vφ
V

)2

ηV ≡
Vφφ
V

(6)

• A different, and often more convenient set of slow-roll parameters (called the “Hub-
ble” slow-roll parameters) are defined by

ε0 ≡ H∗/H (7)

εi+1 = −d ln |εi|
dN

i ≥ 0, (8)

where H∗ is the Hubble parameter at a chosen time (and hence a constant). The
slow-roll parameter ε1 was also introduced in lectures.

• The number of e-folds before the end of inflation is defined by

N(t) = ln
aend
a(t)

(9)

where aend is the scale factor at the end of inflation.
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Problem 1
Consider a flat universe with H(z) = H0 = Cte. A galaxy at redshift z is observed.

(a) what is the present distance to the galaxy ?

(b) what was the distance to the galaxy when the photons we are now receiving were
emitted ?

(c) what was the flight time of these photons from the galaxy to us?

A supernova explodes in the galaxy and emits a total of N photons.

(d) for a flat universe, what is the area of the sphere centered on the supernova and
intercepting our position ?

(e) what is the number of photons detected by an observer on the sphere equipped with
a detector of area A ?

(f) would the observer detect the same number of photons, more photons or fewer
photons if the distance was the same, but Ωk = 1−Ωtot > 0 ? Explain your answer.

Problem 2: Redshift Drift
An observer measures the redshift of a source at t0. In this problem, we want to estimate
by how much the source redshift has varied when we re-observe the same source at a time
t0 + δt0.

(a) write the expression of the redshift z(t0) as a function of the scale parameter a, the
time of observation t0 and the time of emission t1. Same question for z(t0 + δt0).

(b) Show that, at first order in δt, one can express the redshift variation δz = z(t0 +
δt0)− z(to) as a function of H(t0), H(t1), t0, t1 and a.

(c) The comoving coordinate of the source is constant (we neglect its peculiar velocity).
There is therefore a simple relation between the time intervals δt0 and δt1. Write
this relation, and show that

dz

dt0
= H0 × (1 + z)−H(z) (10)

(d) Let’s assume a flat, single component, Universe. The equation of state of this
component is p = wρ. Derive from the Friedmann equation the evolution of H as
a function of z. Show that one can express dz/dt0 as a function of H0, z and w.

(e) Describe the evolution of z as a function of time. Do we always have dz/dt0 > 0 ?
If not, for which range of w do we observe an increase (resp. decrease) of z ?

(f) Assume you live in a flat matter-dominated Universe, with H0 = 68 kms−1Mpc−1.
You observe a galaxy at z = 1. How long do have to wait until you can detect a
relative redshift variation of 10−5 ?

(g) Same question for a flat, vacuum-energy-dominated Universe.
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Problem 3: Weakly Interacting Massive Particles
In this question you can, if you like, ignore uninteresting numerical factors (2π = 1) and
set ~ = c = 1 and G = 1/m2

planck.
Consider a simple universe consisting of photons of number density nγ and a massive
spin 1/2 fermion, χ, of mass mχ and number density nχ . Besides elastic scattering and
bremstrahlung, the only permitted reactions are χχ ↔ γγ (χ’s and photons are their
own antiparticles). The number densities, nχ and nγ, will take on thermal values at the
temperature, T if the forward and backwards rates for χχ ↔ γγ are greater than the
expansion rate, H(T ).

(a) Write an expression for the expansion rate as a function of the temperature for
T � mχ and for T � mχ, and assuming that photons and χ are in thermal
equilibrium. Assume that only relativistic species contribute to the energy density.

(b) Write an expression for the annhilation rate, Γχ, of χ, i.e. the reciprocal of the mean
time before a χ finds another χ and annihilates. The expression should depend
on the number density and on the annihilation cross-section times velocity, σv
(assumed velocity- and temperature independent as is often the case for exothermal
reactions).

(c) Consider a temperature T > mχ. Suppose that the χ are in thermal equilibrium
so that nχ ∼ T 3. How large must σv be for the annhilation rate to be greater than
the expansion rate.

(d) Suppose that the conditions from (c) are satisfied. As the temperature drops below
mχ the number density of χ drops below that of the photons which now dominate the
energy density. As nχ falls, the annhilation rate falls. The decoupling temperature,
Tdec is defined as the temperature where Γχ(Tdec) = H(Tdec) and we write Tdec =
βmχ, where β < 1 is a numerical factor that we will estimate shortly. By setting the
annihilation rate equal to the expansion rate, estimate the number density nχ(Tdec)
as a function of σv, mχ, and β. (Hint: you do not need an explicit form for nχ(T )
to do this.)

(e) What is the χ-photon ratio, nχ/nγ at decoupling as a function of σv, mχ and β?

(f) Assuming that there are no annihilation after Tdec, what is the present value of
nχ/nγ.

(g) What is the present value of ρχ

(h) At what temperature does the universe become matter dominated?

(i) (Just to test your mathematical dexterity). For T < mχ, the equilibrium number
of χ is given by nχ = 2(Tmχ/2π)3/2exp(−mχ/T ). Find an expression for β that
depends on σv and on logβ. For a given σv, this expression can be solved iteratively
for β.
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