From nuclei to stars

Experimental approaches in nuclear astrophysics

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr) Laboratoire de Physique des 2 Infinis Irène Joliot Curie Université Paris Saclay

Outline

Lecture 1: Introduction to nuclear astrophysics

- Lecture 2: Nucleosynthesis processes in the Universe
- Lecture 3: Cross-sections and thermonuclear reaction rates
- Lecture 4: Experimental approaches in nuclear astrophysics
 - 1. Generalities
 - 2. Direct measurements of charged particle induced reactions
 - 1. Stable beams for quiescent burning studies
 - 2. Radioactive ion beams for explosive burning studies
 - 3. Direct measurements of neutron induced reactions
 - 1. The activation method
 - 2. The time of flight method
 - 4. Indirect measurements: the case of the transfer reaction method

1. Generalities

Reactions in nuclear astrophysics

- The energies of astrophysical interest where measurements should be carried out (Gamow peak) are very small $E_0 << E_{coul} = Z_1 Z_2 e^2/r$
- Quiescent burning $\rightarrow E_o \sim \text{few keV} \text{hundreds keV}$
 - Our Sun (T ~ 15 MK) $\rightarrow {}^{7}\text{Be} + p \Rightarrow E_{0} \sim 18 \text{ keV} \quad E_{coul} = 1.52 \text{ MeV}$
 - Red giants (T ~ 200 MK) $\rightarrow {}^{12}C + \alpha \Rightarrow E_{_0} \sim 300 \text{ keV} \quad E_{_{coul}} = 3.43 \text{ MeV}$
- Explosive burning $\rightarrow E_o \sim$ hundreds keV few MeV
 - X-ray bursts (T ~ 0.9 GK) $\rightarrow {}^{30}S + \alpha \Rightarrow E_0 \sim 1.7 \text{ MeV} \quad E_{coul} = 7.54 \text{ MeV}$
- Very small cross sections: $10^{-18} b \le \sigma \le 10^{-9} b$

Experimental strategy

- Measurement of cross section at higher energies and extrapolation to astrophysical energies $E_o \rightarrow$ direct measurement approach
- Determination of resonant state properties $(E_R, \text{ partial widths } \Gamma_i, J^{\pi}) \rightarrow \text{indirect}$ measurement approach

Generalities

Cross section measurements

- Number of reactions per second: $N_{reac} = N_i \times (n_t \times \Delta x) \times \sigma$ where n_t is the number of target atoms per cm⁻³, Δx (cm) the target thickness and N_i the number of projectile per second
- Number of detected events (s⁻¹): $N_{detec} = N_{reac} \times \epsilon$ where ϵ is the detection efficiency (geometrical + intrinsic)

- Examples: at *E* = 20 keV (typical energy in the core of the Sun)
 - ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ (strong interaction): $\sigma(20 \text{ keV}) = 5 \times 10^{-13} \text{ b}$ assuming $n_{t}\Delta x = 10^{18}$ atoms/cm² and $N_{i} = 10^{15} \text{ s}^{-1}$ $\Rightarrow N_{reac} = 1.8 \text{ per hour}$
 - ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ (electromagnetic interaction): $\sigma(20 \text{ keV}) = 3 \times 10^{-18} \text{ b}$ $\Rightarrow N_{reac} = 9.5 \text{ per century}$
 - $p(p,ve^+)^2H$ (weak interaction): $\sigma(20 \text{ keV}) = 5 \times 10^{-25} \text{ b}$

Kinematics and experimental setup

There are two "kinematic" ways of measuring a cross section depending on the mass of the beam nuclei (A_{beam}) wrt the mass of the target nuclei (A_{target})

	Direct kinematic (A _{beam} < A _{target})	Inverse kinematic ($A_{beam} > A_{target}$)
Reaction	²³ Na(α,p) ²⁶ Mg ³⁰ Si(p,γ) ³¹ P	⁴ He(²³ Na,p) ²⁶ Mg p(³⁰ Si,γ) ³¹ P
Beam	stable	Stable, radioactive
Target	solid	Gas, solid
Heavy recoil	E ~ 100's keV → <mark>stay in target</mark>	$E \sim E_{beam} \rightarrow$ escape from target
Light particle	~4 π solid angle	Forward focus
Detection	Charged particle, γ -rays	Heavy recoil, charged particle, γ -rays

The choice of a direct or inverse kinematic approach has a profund impact on the experimental setup

Generalities

2. Direct measurements of charged particles induced reactions

105 Lamb & Hester 1957 0.05 - 0.35 GK Schröder et al. 1987 NACRE extrapolation 1999 104 LUNA data 2004 (solid target) LUNA extrapolation 2004 S-factor (MeV barn) TUNL data 2005 Astrophysical S-factor [keV barn] LUNA data 2006 (gas target) 10³ 10² 2 10 Present Data Bardayan et al. [2002] Bardayan et al. [2001] de Sereville et al. [2009] Solar Gamow peak al. [2006] Jufour & Descouvement [2007 100 50 150 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ECM [keV] Center of Mass Energy (MeV)

The ¹⁴N(p, γ)¹⁵O reaction

Stable nuclides only

Unstable nuclide (18F) involved

The ¹⁸F(p, α)¹⁵O reaction

Direct measurement (charged)

2.1 Stable beams for quiescent burning

LUNA 400 kV accelerator

ANDROMEDE – Van de Graaff 1 – 4 MV – Orsay

Direct measurement (charged - stable)

Requirements and challenges

Low cross section \rightarrow low yields \rightarrow poor signal-to-noise ratio

Sources of background

- Beam induced
 - Reactions with impurities in the target
 - Reactions on beam collimators/apertures
- Non beam-induced
 - Interaction from cosmic muons with detection setup
 - Charged particles / γ -rays from natural background
 - Neutron induced reactions

Requirements & challenges →

Improving signal-to-noise ratio

- Improving signal
 - Very long measurements (weeks, months...)
 - High beam intensities: heating effects on target (limitation)
 - Thicker targets (?): exponential drop of the cross section
 - High detection efficiency
- Reducing noise/background
 - Ultra pure targets: difficult
 - Dedicated experimental setup -

Direct measurement (charged - stable)

- Coincidence measurements (STELLA...)
- Recoil mass separator (DRAGON...)
 - Underground laboratory (LUNA...)

The STELLA project

- Direct measurement of the ¹²C+¹²C cross section @ ANDROMEDE-Orsay (4 MV Pelletron)
- Carbon burning in massive stars ($M \ge 8 M_{\odot}$)

 ε_{γ} = 8% (440 keV), 5% (1634 keV)

- Cryogenic pumping
- Rotating target system (> 1000 rpm)
 - \rightarrow *I* > 1 pµA

Measurements down to $E_{cm} \sim 2.1 \text{ MeV} (E_{coul} = 8.69 \text{ MeV})$

Coincidence

measurement

stars (M \ge 8 M_{\odot})

IPHC and GANIL collaboration

Direct measurement (charged – stable)

M2 NPAC 2022-2023 (Lecture 4)

 γ -ray / particle

coincidence

measurement

Coincidence measurement

Coincidence measurement

Sources of background at "sea" level

Main sources of γ -ray background

- Natural background (ambient)
 - Natural ²³⁸U and ²³²Th chains
 - Radon (²³²Rn)
 - Long lived radionuclides (⁴⁰K...)
 - Cosmogenic radionuclides (¹⁴C, ²²Na, ²⁶Al...)
- Cosmic rays (muons)
- Neutrons from (α,n) reactions and fission

In case where background is dominated by cosmic rays (interaction of muons in experimental setup), poor signal-to-noise at surface level → going underground + low U/Th environment

LUNA (Laboratory Underground for Nuclear Astrophysics) facility

Gran Sasso – Italy

Direct measurement (charged – stable)

LUNA – Phase 2

Underground measurement

400 kV accelerator (2002-2012)

Formicola+, NIMA (2003) Direct measurement (charged – stable) Voltage range: 50 - 400 keVOutput current: 1 mA Hydrogen, $500 \mu \text{A He}^+$

Precise determination of beam energy E_{B} and beam energy spread (ΔE_{B} < 100 eV) is extremely important at very low energies (e.g. < 100 keV) due to the exponential drop of cross section

⇒ Measurement of very well known $^{25,26}Mg(p,\gamma)$ and $^{23}Na(p,\gamma)$ resonances between 300- and 400-keV

Case of the ${}^{14}N(p,\gamma){}^{15}O$ reaction

- Error of 1.5 keV in E_{B} at E_{p} = 100 keV
 - \rightarrow ~ 20% error in cross section
- With an error of 300 eV in $E_{_B}$ at $E_{_p} = 100 \text{ keV}$
 - \rightarrow ~ 5% error in cross section

The ¹⁴N(p,γ)¹⁵O case – experiment

CNO solar neutrinos + Globular Cluster age

- Gamow peak: 30 – 110 keV
- Contributing resonances: low energy tail of E_r = 259 keV
 + subthreshold E_r = - 21 keV

Direct measurement (charged – stable)

Measurements

- High-energy $E_p = 114 367 \text{ keV} (E_{cm} = 106 343 \text{ keV})$
 - → HPGe detectors + solid TiN target
 - → high resolution measurement of all γ -ray transitions & branching ratios
- Low-energy E_p = 70 230 keV (E_{cm} = 65 215 keV)
 - → BGO detectors + Nitrogen gas target
 - → high efficiency measurement ($\varepsilon_{\gamma} \approx$ 70%) for 7 MeV γ -rays → total cross section measurement

¹⁴N(p,γ)¹⁵O – "high" energy measurement

Direct measurement (charged – stable)

¹⁴N(p, γ)¹⁵O – low energy measurement

- Low energy measurement needs high γ-ray detection efficiency
 - → BGO array

• Summing technique:

→ primary and secondary γ -rays arising from transitions to intermediate states of ¹⁵O get summed in a "full energy" peak

Bemmerer+, NPA (2006)

Direct measurement (charged - stable)

The ¹⁴N(p, γ)¹⁵O case – results

Astrophysical S-factor

Astrophysical impact

- Solar neutrino flux from CNO cycle reduced by a factor of 2!
- Age of globular cluster increased by 1 Gyr!!

Isochrones & Globular Clusters

Direct measurement (charged - stable)

Recoil separators

- Well adapted to study radiative capture reactions [(p, γ), (α , γ)] in inverse kinematics
- Recoil maximum angle: $\theta_{max} = \arctan\left(\frac{E_{\gamma}/c}{\sqrt{2m_b E_b}}\right)$

- Most of the beam does not interact
 - → recoil separator system needed to:
 - Transport the recoil ions to a detection system (~100 % efficiency)
 - Reject the incident beam
- (few) examples of recoil separator
 - DRAGON (TRIUMF, Canada)
 - St George (NSL, Notre Dame)
 - SECAR (FRIB)

Requirements

- High beam suppression factor $10^{10} 10^{15}$
- Large acceptance $[(\alpha, \gamma)]$

Direct measurement (charged – stable)

The DRAGON (1/2)

- ISAC 1: RIBs / stable (OLIS)
- 0° spectrometer
- Time of flight: 21 m
- Beam rejection: $10^{12} 10^{15}$
- Angular acceptance: cone ±20 mrad

Direct measurement (charged - stable)

- Target: gas/solid
 Focal plane: DSSSD...
 - BGO array: $\varepsilon_{\gamma} = 5\%$ @ 5 MeV

The DRAGON (2/2)

Direct measurement (charged – stable)

The ⁴⁰Ca(α , γ)⁴⁴Ti reaction @ DRAGON

- ⁴⁴Ti produced in massive stars has been observed in supernovae remnant (Cas A)
- Direct mesasurement of resonance strength using thick target yield formalism (Γ_{tot} < beam energy loss in the target)

$$\omega \gamma = \frac{2}{\lambda^2} \frac{m_t}{m_p + m_t} \left(\frac{dE}{dx}\right) Y$$

with dE/dx the stopping power of the projectile in the target

Direct measurement (charged – stable)

M2 NPAC 2022-2023 (Lecture 4)

Selection of ⁴⁴Ti recoil events with the DRAGON

Vockenhuber+ (2007) PRC

Direct measurement: : your turn!

The cross section of the ${}^{2}H(p,\gamma){}^{3}He$ reaction was measured at low energies at the LUNA laboratory using a 100 μ A proton beam impinging a deuterium gas target ($N_{\tau} = 1.485 \times 10^{17}$ at/cm²). The reaction chamber was surrounded by BGO detectors covering a large solid angle with an efficiency at 5.5 MeV of about 70 %.

Suppose that the total charge Q = 8.64 C was accumulated during an irradiation time of one day at $E_{c.m.}$ = 7.8 keV and that N_{ev} = 20000 γ -rays from the D(p, γ)³He were recorded during this time.

- 1) What is the reaction cross section at this energy and what is the value of the corresponding S-factor?
- 2) Assuming that the D(p, γ)³He S-factor is constant in this energy range, estimate the counting rate if the experiment was performed at $E_{c.m.} = 6.65$ keV (corresponding to T = 15.6 MK).
- 3) Calculate the rate of the $D(p,\gamma)^{3}$ He reaction at T = 15.6 MK assuming a constant S-factor.
- 4) What is the lifetime at equilibrium of a deuterium nucleus in the core of the Sun with regard to the $D(p,\gamma)^{3}$ He reaction? Assume a proton density N = 4.5×10^{25} cm⁻³.

Direct measurement: : your turn!

1) What is the reaction cross section at this energy and what is the value of the corresponding S-factor?

Number of incident protons (2 ways):

- $N_p = Q / e = 8.64 \text{ C} / 1.6 \times 10^{-19} \text{ C} = 5.4 \times 10^{19}$
- $N_p = I / e \times \Delta t = 100 \times 10^{-6} \text{ A} / 1.6 \times 10^{-19} \text{ C} \times 1x24x3600 = 5.4 \times 10^{19}$

Reaction cross section:

• $\sigma = N_{ev} / (N_T \times N_p \times \epsilon) = 20000 / (1.485 \times 10^{17} \times 5.4 \times 10^{19} \times 0.7) = 3.56 \times 10^{-33} \text{ cm}^2 = 3.6 \text{ nb}$

Astrophysical S-factor: (see Lecture 3, slide 11)

- $S(E) = \sigma(E) E \exp(2\pi\eta) = 2.63 \times 10^{-4} \text{ keV b}$
- 2) What is the counting rate at $E_{c.m}$ = 6.65 keV assuming a constant S-factor?

Cross section at E_{cm} = 6.65 keV:

• $S(6.65) = S(7.8) \implies \sigma(6.65) = 7.8 / 6.65 \times \sigma(7.8) \times \exp[2\pi(\eta(7.8) - \eta(6.65)]]$ $\sigma(6.65) = 0.55 \times \sigma(7.8)$

Counting rate:

• $N_{ev}(6.65) = 0.55 \times N_{ev}(7.8) = 11000 \gamma$ -rays / day

Direct measurement (charged – stable) M2 NPAC 202

Direct measurement: : your turn!

3) Calculate the rate of the $D(p,\gamma)^{3}$ He reaction at T = 15.6 MK assuming a constant S-factor (Lecture 3, slide 34, 33)

$$\langle \sigma v \rangle_{123} = 7.20 \times 10^{-19} \frac{\tau^2 \exp(-\tau)}{Z_1 Z_2 \mu_{amu}} S(E_0) \text{ cm}^3 \text{s}^{-1}$$

with $S(E_0)$ in keV b

$$\tau = \frac{3E_0}{kT} = 42.46 \left(Z_1^2 Z_2^2 \mu_{amu} / T_6 \right)^{1/3}$$

One get τ = 14.84, and $\langle \sigma v \rangle$ = 2.236 \times 10⁻²⁶ cm³ s⁻¹

4) Calculate the deuterium lifetime at equilibrium in the Sun core (Lecture 3, slide 26)

•
$$\tau_p(D) = \frac{1}{N_p \langle \sigma v \rangle_{D(p,\gamma)^3 He}} = 0.994s$$

Direct measurement (charged – stable) M2 NPAC 2022-2023 (Lecture 4)

2.2 Radioactive ion beams

for explosive burning

Direct measurement (charged – RIB)

Characteristics & challenges

- In explosive burning scenarios, because of high temperature and density, the nuclear flow goes through a series of light particle captures forming nuclides far from the valley of stability → radioactive nuclei
- Energies $E_o \sim 100$'s keV few MeV
- Technique for measuring cross sections:
 - Radioactive targets: only possible for a few long-lived nuclide, e.g. ⁷Be (53 d), ²²Na (2.6 y), ²⁶Al(0.7 My)
 - Radioactive beams:
 - Inverse kinematics (direct or indirect measurement)
 - Large solid angle detector array & high detection efficiency
- Challenges
 - Low beam intensities \rightarrow 5 8 orders of magnitude lower than for stable beams
 - Usually beam contamination is present
 - Usually beam induces background

Direct measurement (charged – RIB)

Radioactive beam production methods

ISOL (Isotope Separation On Line)

A radioactive beam is produced practically at rest in a thick target bombarded with a primary beam and post-accelerated (SPIRAL1 / GANIL, ALTO)

- Good beam quality (energy, emittance)
- High purity
- Acceptable (high) intensities
- * Limited number of species, depends on chemical properties, limited to $T_{1/2} > 1$ s

Projectile fragmentation

A very high energy beam is fragmented in a low Z target. From the many reaction products, the desired one is selected in mass, charge and momentum via a fragment separator and transported to the experimental area without acceleration (GANIL, GSI, RIKEN, MSU)

- Independent from chemical properties, no limitation on T_{1/2}
- Beam energy too high for direct measurements
- * Poor beam quality (energy, emittance)
- * Beam contamination

Direct measurement (charged – RIB)

Targets for inverse kinematic studies

H targets for (p,γ) and (p,α) studies

Solid CH₂ target:

- · easy to handle
- $\Delta x \sim 50 \text{few } 1000 \ \mu\text{g/cm}^2$

Fusion evaporation background induced from Carbon

Cryogenic solid target:

- No Carbon contamination
- More at/cm² for same energy loss

Not easy to handle

He targets for (α, γ) studies

Solid implanted target:

· Easy to handle

Window-confined gas target:

High concentration (depends on pressure)

Windowless supersonic gas jet target:

- High concentration 10¹⁹ at/cm² (e.g. JENSA)
- No contamination, no degradation

- Low concentration (~ $10^{15} 10^{17}$ at/cm²)
- Sputtering (He don't stay in target under irradiation)

Background induced by reactions on entrance and exit windows

Differential pumping system

Detection setups (a few examples...)

Limited RIB intensities ($\leq 10^7$ pps) require large solid angle & efficient detection setups

Charged particles

• Large area, highly segmented silicon strip detector arrays: LEDA, MUST2, ORRUBA, SHARC, MUGAST...

> **LEDA** \rightarrow 16 strips in θ 300 μ m or 500 μ m

- ← MUST2 telescopes3 stages:
- Si 128+128 strips (X, Y)
- 300 μm (10x10 cm²)
- SiLi 16 pads, 4.5 mm
- Csl, 16 cristals, 5 cm

γ-rays

 Close to 4π coverage to compensate low intrinsic detection efficiency: EXOGAM, AGATA, GRETINA...

Gammasphere

100 HPGe detector array absolute efficiency: 9% for 1.33 MeV γ-ray

AGATA

 $4\pi: \epsilon_{\gamma} \sim 8\% - 14\%$

- Large induced γ -ray background from RIB β -decay

Direct measurement (charged – RIB)

The ¹⁸F(p, α)¹⁵O reaction case

• Competition between the ¹⁸F(p, α)¹⁵O reaction and ¹⁸F β^+ -decay has strong implication on the γ -ray emission at \leq 511 keV in classical novae

- Interference effects in Gamow peak can significantly change the rate of ¹⁸F destruction in classical novae
 - 3/2⁺ states: "8-, 38-" and 665-keV
 - 1/2⁺ states: sub-threshold + 1.4 MeV

Direct measurement of ${}^{1}H({}^{18}F,\alpha){}^{15}O$

Experimental setup

→ coincident measurement

- Beam: ¹⁸F (5×10^6 pps) produced at ISAC (Isotope Separator & Accelerator; TRIUMF; Canada) by bombarding a thick target with 500 MeV proton (up to 100 μ A)
- Target: 33 μg/cm² CH₂
- Charged particle detectors
 - LEDA $\rightarrow \alpha$ -particles
 - S2 \rightarrow ¹⁵O

Direct measurement (charged – RIB)

¹H(¹⁸F, α)¹⁵O – results

Direct measurement (charged – RIB)

3. Direct measurements of neutron induced reactions (s-process)

Further reading:

• R. Reifarth et al., J. Phys. G.: Nucl. Part. Phys. 41, 053101 (2014)

Direct measurement (neutrons)

Experimental approaches

• Maxwellian average cross section (MACS)

$$\langle \sigma \rangle \equiv \frac{\langle \sigma v \rangle}{v_T} = \frac{2}{\sqrt{(\pi)}} \frac{1}{(k_B T)^2} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{k_B T}\right) dE$$

with the most probable velocity $v_T = \sqrt{k_B T/\mu}$

- Neutrons are unstable particles ($T_{1/2}$ = 614 s), not (yet) possible to perform experiments in inverse kinematics
 - \rightarrow direct measurements of (n, γ) cross section on relatively long-lived samples
- Two different experimental approaches
 - Activation method
 - Produce neutron stellar spectrum in laboratory
 - Measure directly the stellar Maxwell averaged cross section by activation
 - Time of flight method
 - Measure the cross section $\sigma(E_n)$ by time of flight, e.g. 0.3 keV $\leq E_n \leq$ 300 keV
 - Determine the MACS

Direct measurement (neutrons)

Activation method

- Neutron produced using the ⁷Li(p,n)⁷Be reaction at $E_p = 1912 \text{ keV}$ \rightarrow simulates a stellar neutron spectrum for thermal energy of $k_BT = 25 \text{ keV}$
 - \rightarrow right in the temperature range 250
 - 350 MK of s-process

- $\Theta_{\rm n} < 60^{\circ}$
- Gold foils for normalization (well-known neutron capture cross section)

• Induced activity is measured after irradiation with HPGe detectors

•
$$A(n,\gamma)B \xrightarrow{T_{1/2}} C^{*}(\gamma)C_{g.s.}$$

Alternative neutron sources

Experimental neutron energy spectrum from the ${}^{3}H(p,n){}^{3}He$ reaction at $E_{p} = 1099$ keV

Stellar spectrum of $k_{B}T = 52 \text{ keV}$

 2×10^8 neutrons/s @ 100 μ A

Experimental neutron energy spectrum from the ${}^{18}O(p,n){}^{18}F$ reaction at $E_p = 2582$ keV

Stellar spectrum of $k_{B}T = 5.1 \text{ keV}$

 $2{\times}10^{\scriptscriptstyle 5}$ neutrons/s @ 100 μA

The ⁶⁰Fe(n,γ)⁶¹Fe reaction

- ⁶⁰Fe mainly produced in massive stars & released in ISM by subsequent core collapse supernovae (type II) \rightarrow stellar model test
- Production of ⁶⁰Fe strongly depends on the uncertain ⁵⁹Fe(n, γ)⁶⁰Fe and ⁶⁰Fe(n, γ)⁶¹Fe cross sections.

Direct measurement (neutrons)

⁶⁰Fe(n,γ)⁶¹Fe activation measurement

⁶⁰Fe sample: 7.8×10^{15} atoms ~ 800 ng

⁶⁰Fe sample irradiated 40 times for 15 min, then activity counted for 10 min

Result: $<\sigma>$ = 10.2 (2.9^{sys}) (1.4^{stat}) mb

Clover Ge detector for γ -ray detection

Direct measurement (neutrons)

Activation measurement: pros/cons

- ✓ High sensitivity → small sample mass (e.g. 28 ng for ¹⁴⁷Pm(n,γ) measurement)
- Use of natural samples possible, no need for enriched samples
- Measurement of radioactive samples possible due to excellent energy resolution of HPGe detectors
- Direct capture component included

Only possible when product nuclide is radioactive

- So far MACS determination only possible at thermal energies of $k_{B}T = 5$ -, 25- and 52-keV
 - \rightarrow stellar models for s-process need MACS between $k_{_{B}}T = 5$ to 90 keV

Time-of-Flight (ToF) method

• Energy of the neutron which caused the event:

$$v = \frac{L}{\Delta t} \quad \Rightarrow \quad E = \frac{1}{2}mv^2$$

• Pulsed neutron source coupled with 185 m flight path

 Neutron energy from few meV to several GeV determined by ToF

4π calorimeter (42 BaF₂)

Several (n, γ) measurements involved in *s*-process

M2 NPAC 2022-2023 (Lecture 4)

n-TOF @ CERN

4. Indirect measurements

Cross-section of astrophysical interest not measured directly

- Can be used to study quiescent and explosive nucleosynthesis processes
- Can use stable beams to study reactions involving radioactive nuclides not far from the valley of stability
- Radioacive ion beams can be used as well
- Experiments with high energies (~ few 10's of MeV) implying higher cross sections
- Experimental conditions are relatively less constraining than for direct measurement (not necessarily true with RIB studies)
- Results are model dependent

- Examples of indirect methods:
 - **Transfer reactions**, Asymptotic Normalization Coefficient (ANC) method, Trojan Horse Method (THM), surrogate method, Coulomb dissociation...

Transfer reactions

Two-body kinematics: A(a,b)B*

- Measured: E_{b} , θ_{b}
- Known: beam energy
- Determined:
 - \rightarrow excitation energies of B*
 - → differential cross-section for each excited state

 $^{30}Si(^{3}He,d)^{31}P$ @ 25 MeV – one-proton transfer for studying $^{30}Si(p,\gamma)^{31}P$

What can we learn from transfer reactions?

Shape of angular distribution

- sensitivity to angular momentum l of the transferred particle
 - \rightarrow constrain spin of populated state
 - $j = l \pm \frac{1}{2}$ (one-nucleon transfer)
 - \rightarrow determination of parity

Normalization of angular distribution

Spectroscopic factor determination

$$d\sigma/d\Omega_{exp} = C^2 S_p d\sigma/d\Omega_{DWBA}$$

The spectroscopic factor is related to the overlap between the ²⁶Mg+p configuration and the final ²⁷Al* state, e.g. how well a ²⁷Al excited state is described as a ²⁶Mg core and a proton

Transfer reactions are extremely powerful to:

- do spectroscopy
- probe single-particle nature of nuclear states

N(θ): number of detected particles at angle θ N_p: number of incident particles, ΔΩ: solid angle

Why are transfer reactions useful in

nuclear astrophysics?

Thermonuclear reaction rate: $N_A < \sigma v > = \sqrt{\frac{8}{\pi\mu}} \frac{N_A}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{(-E/k_B T)} dE$

Case of a radiative capture: $A(a,\gamma)B$

Why are transfer reactions useful in

nuclear astrophysics?

Thermonuclear reaction rate: $N_A < \sigma v > = \sqrt{\frac{8}{\pi\mu}} \frac{N_A}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{(-E/k_B T)} dE$

Case of a radiative capture: $A(a,\gamma)B$

Resonant capture

• Only possible for $E_{c.m.} = E_{R} (= E_{x} - Q)$

•
$$\sigma(E) = \pi^2 \frac{2J_R + 1}{(2J_A + 1)(2J_a + 1)} \frac{\Gamma_a(E)\Gamma_\gamma(E + Q)}{(E - E_R)^2 + \Gamma_{tot}^2(E)/4}$$

• Partial particle width $\rightarrow \Gamma_a = C^2 S_a \Gamma_a^{s.p.}$

Indirect measurement

Why are transfer reactions useful in

nuclear astrophysics?

Thermonuclear reaction rate: $N_A < \sigma v > = \sqrt{\frac{8}{\pi\mu}} \frac{N_A}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{(-E/k_B T)} dE$

Case of a radiative capture: $A(a,\gamma)B$

Resonant capture

• Only possible for $E_{c.m.} = E_{R} (= E_{x} - Q)$

•
$$\sigma(E) = \pi^2 \frac{2J_R + 1}{(2J_A + 1)(2J_a + 1)} \frac{\Gamma_a(E)\Gamma_\gamma(E + Q)}{(E - E_R)^2 + \Gamma_{tot}^2(E)/4}$$

• Partial particle width $\rightarrow \Gamma_a = C^2 S_a \Gamma_a^{s.p.}$

Direct capture

- Possible for all incident energies
- Capture on bound states of final nucleus

•
$$\sigma^{DC}(E) = \sum_{f} C_f^2 S_f \sigma_f^{DC}(E)$$

M2 NPAC 2022-2023 (Lecture 4)

Indirect measurement

Particle partial width determination

Single particle decay width

• For an excited state of nucleus B with a pure core (A) – particle (a) configuration $\rightarrow |B^*\rangle = 1 \times |A \otimes a\rangle$

• The single particle decay width of excited state B* in the a+A channel is:

$$\Gamma_a^{s.p.} = \frac{\hbar^2 s}{\mu} |\mathcal{R}(s)|^2 P_l(E_r, s)$$

Iliadis, Nuclear Physics of Stars (2015)

- Product of two probabilities:
 - Probability that the single nucleon will appear at the nuclear boundary $|R(s)|^2$
 - Probability that the single nucleon will penetrate Coulomb and centrifugal barrier $P_{l}(E_{r},s)$

General case

• The excited state of nucleus B is a mixture of configurations

 $\rightarrow |B^*\rangle = \langle a \otimes A | B^* \rangle \times |A \otimes a \rangle + \dots$ where $\langle a \otimes A | B^* \rangle \propto \sqrt{C^2 S_a}$ is the overlap between the final and initial state

$$\Gamma_a = C^2 S_a \Gamma_a^{s.p.}$$

Indirect measurement

Transfer reactions: the DWBA model

The simplest theoretical model to describe a transfer reaction: $A + a(=b+x) \rightarrow b + B^*(=A+x)$ DWBA: Distorted Wave Born Approximation

Example of the ¹⁸F(d,p)¹⁹F transfer reaction

DWBA main assumptions

- The transferred nucleon/cluster is directly deposited on its orbital

 → no nucleon rearrangment in the final nucleus (B)
- The entrance and exit channels are dominated by elastic scattering \rightarrow Distorted Wave
- The transfer process is weak enough to be treated as a first order perturbation \rightarrow Born Approximation

Indirect measurement

Transfer reactions: the DWBA model

Α

Transfer of particle x on core A

Transition amplitudes

• Cross section is proportional to the square of transition amplitudes $T_{i \rightarrow f}$

a = h + x

• DWBA amplitude
$$T_{i \to f}^{DWBA} = \iint \chi_f^{(-)}(\vec{k}_f, \vec{r}_f)^* \langle b, B | V_{bx} | a, A \rangle \chi_i^{(+)}(\vec{k}_i, \vec{r}_i) d\vec{r}_i d\vec{r}_f$$

Austern (1970)

 $B^* = A + x$

Ingredients

- $\chi_{i,f}$ are the distorted wave functions describing elastic scattering in the entrance (*i*) and exit (*f*) channels
- $\langle b, B | V_{bx} | a, A \rangle$ is the nuclear matrix element which contains all the information concerning
 - angular momenta selecting rules
 - nuclear structure: overlap between the final state |B*> and the |A+x> configuration

 $\langle x \otimes A | B^* \rangle \propto \sqrt{C^2 S_x^B} \mathcal{R}(r)$ $\mathcal{R}(r)$: radial part of the A+x wavefunction

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} \propto S_x^B S_x^a \left(\frac{d\sigma}{d\Omega}\right)_{DWBA} \quad S_x^a \approx 1$$
 (in most cases)

Indirect measurement

M2 NPAC 2022-2023 (Lecture 4)

53/61

DWBA ingredients

- Entrance and exit channels potentials \rightarrow distorded waves
 - Components: volumic, surfacic and spin-orbit (if non zero spins are involved)
 - Complex potential: attractive (real part) and absorptive (imaginary part)
 - \rightarrow elastic scattering from entrance/exit channel: A(a,a)A and B(b,b)B
 - \rightarrow global optical potential paratremization for given energy and mass range

(see Thompson & Nunes, p. 132-133)

- Binding potential → interaction of the transferred nucleon(s) with the core in the final nucleus
 - Depth of volumic potential is adjusted to reproduced binding energy of bound state
 - Geometry of potential $(r_i, a_i) \rightarrow$ uncertainty on spectroscopic factors
- Software → FRESCO, DWUCK, TWOFNR, etc....

https://people.nscl.msu.edu/~brown/reaction-codes/

Transfer reactions: your turn!

What kind of transfer reactions can you use to determine the spectroscopic properties (E_R , ℓ , parity, spectroscopic factors) for the following reactions?

- A(p,γ)C reactions
- A(n,γ)C reactions
- $A(\alpha,\gamma)C$ and $A(\alpha,p)B$ and $A(\alpha,n)D$ reactions

³⁰Si(³He,d)³¹P experimental study

Q3D magnetic spectrograph Dipol 2

Experimental conditions

• ³He beam @ 25 MeV, 200 enA

MLL

- Targets ³⁰SiO₂ (17 μg/cm²) + ^{nat}C (40 μg/cm²)
- 7 detection angles between $\Theta_{lab} = 6^{\circ}$ and 32°
- 6.5 keV resolution (FWHM) at 12°
 - Doublet at 7718
 keV and 7736
 keV is now
 resolved
 - Observation of the key 7442 keV state ($E_R = 144$ keV), main remaining uncertainty 57/61

Angular distributions

Strong sensitivity to transferred angular momentum (one-nucleon transfer)

⁷Li(¹⁵O,tγ)¹⁹Ne: MUGAST + VAMOS + AGATA

M2 NPAC 2022-2023 (Lecture 4)

• $\Delta B\rho \pm 10^{\circ}$ (~) Indirect measurement

Online spectra

Indirect measurement

Excitation energy (¹⁹Ne in VAMOS)

 γ -ray energy vs excitation energy

Transfer reaction summary

• Advantages

- High cross sections
- Allows to determine excitation energies, angular momenta, parity, partial widths (useful for resonant reactions)
- Limitations and warnings
 - 20% 30% uncertainty on spectroscopic factors related to optical potential parameters
 - Other reaction mechanisms are possible
 - Multi-step transfer
 - Projectile breakup
 - Compound nucleus (statistical model)

Bibliography

- Nuclear Physics of Stars (2nd edition) Christian Iliadis, Wiley-VCH Verlag GmbH & Co. KGaA, 2015 ISBN 978-3-527-33648-7
- Direct Nuclear Reaction Theories Norman Austern, Wiley-Interscience, John Wiley & Sons, 1970 ISBN 0-471-03770-2
- Transfer reactions as a tool in Nuclear Astrophysics (review)
 F. Hammache & N. de Séréville, Frontiers in Physics (2021) Vol 8, 602920