Master NPAC

Correction of Cosmology Homework \#2

December 13, 2022

1. Preliminary question:

$$
\frac{d a \chi}{d t}=\dot{a} \chi+a \dot{\chi} \quad \Rightarrow \frac{d a \chi}{d t}\left(t_{0}\right)=a_{0} \dot{\chi}\left(t_{0}\right)
$$

$d \tau / d t$ as a function of a and χ :

$$
c^{2} d \tau^{2}=c^{2} d t^{2}\left(1-a^{2} \dot{\chi}^{2} / c^{2}\right) \quad \Rightarrow \quad \frac{d \tau}{d t}=\left(1-\frac{a^{2} \dot{\chi}^{2}}{c^{2}}\right)^{1 / 2}
$$

2. Initial values of $d t / d \tau$ and $d \chi / d \tau$:

$$
\begin{gathered}
\frac{d t}{d \tau}=\left(1-\frac{a^{2} \dot{\chi}^{2}}{c^{2}}\right)^{-1 / 2} \\
\frac{d \chi}{d \tau}\left(t_{0}\right)=\frac{d \chi}{d t} \frac{d t}{d \tau}\left(t_{0}\right)=\frac{v_{0}}{a_{0}}\left(1-\frac{a_{0} \dot{\chi}^{2}\left(t_{0}\right)}{c^{2}}\right)^{-1 / 2}=\frac{v_{0}}{a_{0}} \frac{1}{\sqrt{1-\frac{v_{0}^{2}}{c^{2}}}}
\end{gathered}
$$

3 From the geodesics equation to the differential equations followed by $t(\tau)$ and $\chi(\tau)$:
The geodesics for the time coordinate is:

$$
\frac{d^{2} t}{d \tau^{2}}+\Gamma_{\alpha \beta}^{0} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0
$$

If you explicit the sum and plug in the values of the Christoffel symbols (which we have computed in class), we get:

$$
\frac{d^{2} t}{d \tau^{2}}+\Gamma_{11}^{0}\left(\frac{d \chi}{d \tau}\right)^{2}=0
$$

which gives:

$$
\frac{d^{2} t}{d \tau^{2}}+a \dot{a}\left(\frac{d \chi}{d \tau}\right)^{2}=0
$$

For the spatial coordinate, the geodesics equation is:

$$
\frac{d^{2} \chi}{d \tau^{2}}+2 \Gamma_{01}^{1}\left(\frac{d t}{d \tau}\right)\left(\frac{d \chi}{d \tau}\right)=0
$$

which gives

$$
\begin{gathered}
\frac{d^{2} \chi}{d \tau^{2}}+2\left(\frac{\dot{a}}{a}\right) \frac{d t}{d \tau} \frac{d \chi}{d \tau}=0 \\
\frac{d}{d \tau}\left(a^{2} \frac{d \chi}{d \tau}\right)=0
\end{gathered}
$$

4 Differential equation $d \chi / d \tau=f(a, \chi, t)$

$$
\dot{\chi}=\frac{d \chi}{d \tau} \frac{d \tau}{d t}
$$

Integrating the differential equation obtained at the previous step, we have:

$$
a^{2} \frac{d \chi}{d \tau}=a^{2} \frac{d \chi}{d t} \frac{d t}{d \tau}=A \quad \text { with } \quad A=a_{0} v_{0}\left(1-\frac{v_{0}^{2}}{c^{2}}\right)^{-1 / 2}
$$

or

$$
a^{2} \dot{\chi}\left(1-\frac{a^{2} \dot{\chi}^{2}}{c^{2}}\right)^{-1 / 2}=A
$$

After a little bit of algebra, we obtain:

$$
\dot{\chi}= \pm \frac{A}{a\left(a^{2}+\frac{A^{2}}{c^{2}}\right)^{1 / 2}}
$$

Two cases:

$$
\begin{array}{lll}
v \rightarrow 0 & A \sim a_{0} v_{0} & \dot{\chi} \sim \frac{a_{0} v_{0}}{a\left(a^{2}+\frac{a_{0}^{2} v_{0}^{2}}{c^{2}}\right)^{1 / 2}} \sim \frac{a_{0} v_{0}}{a^{2}} \\
v \rightarrow c & A \rightarrow \infty & \dot{\chi} \sim \frac{A}{a \frac{A}{c}\left(1+\frac{a^{2} c^{2}}{A}\right)^{1 / 2}} \sim \frac{c}{a} \tag{2}\\
\hline
\end{array}
$$

5 Matter-dominated Universe: $a(t)=a_{0}\left(t / t_{0}\right)^{2 / 3}, t_{0}=(2 / 3) H_{0}^{-1}$:
Now, it's just about integrating the equations we have obtained above:
First case $\left(v_{0} \rightarrow 0\right)$:

$$
\begin{gather*}
\frac{d \chi}{d t} \tag{3}\\
=a_{0} v_{0} a_{0}^{-2}\left(\frac{t}{t_{0}}\right)^{-4 / 3} \tag{4}\\
d \chi \tag{5}\\
=\frac{v_{0}}{a_{0}} t_{0}^{4 / 3} t^{-4 / 3} d t \\
\chi_{1}=\frac{2 v_{0}}{a_{0}} H_{0}^{-1}\left(1-\left(\frac{t_{0}}{t_{1}}\right)^{1 / 3}\right)
\end{gather*}
$$

Second case $\left(v_{0} \rightarrow c\right)$:

$$
\begin{align*}
\frac{d \chi}{d t} & =\frac{c}{a(t)}=\frac{c}{a_{0}} t_{0}^{2 / 3} t^{-2 / 3} \tag{6}\\
\chi_{1} & =\frac{2 c}{a_{0}} H_{0}^{-1}\left[\left(\frac{t_{1}}{t_{0}}\right)^{1 / 3}-1\right] \tag{7}
\end{align*}
$$

6 Vacuum-energy-dominated Universe: $a(t)=a_{0} \exp H_{0}\left(t-t_{0}\right)$
Same as above:
First case $\left(v_{0} \rightarrow 0\right)$:

$$
\begin{gather*}
d \chi \quad=\frac{v_{0}}{a_{0}} e^{-2 H_{0}\left(t-t_{0}\right)} d t \tag{8}\\
\chi_{1}=\frac{v_{0}}{a_{0}} e^{2 H_{0} t_{0}} \int_{t_{0}}^{t_{1}} e^{-2 H_{0} t} d t \tag{9}\\
=\frac{v_{0}}{a_{0}} \frac{1}{2 H_{0}}\left(1-e^{-2 H_{0}\left(t_{1}-t_{0}\right)}\right) \tag{10}
\end{gather*}
$$

Second case $\left(v_{0} \rightarrow c\right)$:

$$
\begin{array}{rc}
d \chi \quad & =\frac{c}{a_{0}} e^{-H_{0}\left(t-t_{0}\right)} d t \\
\chi_{1} & =\frac{c}{a_{0}} e^{H_{0} t_{0}} \int_{t_{0}}^{t_{1}} e^{-H_{0} t} d t \\
= & \frac{c}{a_{0}} \frac{1}{H_{0}}\left(1-e^{-H_{0}\left(t_{1}-t_{0}\right)}\right) \tag{13}
\end{array}
$$

7
Just have a look at the equations: In a matter-dominated Universe, with $v \rightarrow c$, you can indeed beat the expansion. In a vacuum-dominated Universe, no way.

