Master NPAC
 Cosmology homework \#2

December 1, 2022

Answers are to be sent by email to nicolas.regnault-AT-lpnhe.in2p3.fr by Thursday December 8th, 2022. Please use the following format (given as an example):

```
<your name>
```

1. A
2. B
3. C
4. D
5. A
6. B
7. A

We have seen that, in a homogeneous, isotropic Universe in expansion, the metric, in comoving coordinates (t, χ, θ, ϕ) can be written as:

$$
\begin{equation*}
d s^{2}=-c^{2} d \tau^{2}=-c^{2} d t^{2}+a^{2}(t)\left(d \chi^{2}+r^{2}(\chi)\left(d \theta^{2}+\sin \theta d \phi^{2}\right)\right) \tag{1}
\end{equation*}
$$

General Relativity tells us that free particles follow geodesics $\left(x^{\mu}(\lambda)\right)$, which are solution of the geodesics equation:

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0 \tag{2}
\end{equation*}
$$

where the Γ coefficients are the christoffel connections. For the metric above, we remind you that:

$$
\begin{equation*}
\Gamma_{00}^{0}=\Gamma_{00}^{i}=\Gamma_{0 i}^{0}=0 \quad \Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta_{j}^{i} \quad \Gamma_{i j}^{0}=a \dot{a} \tilde{g}_{i j} \quad \Gamma_{11}^{1}=\Gamma_{\chi \chi}^{\chi}=0 \tag{3}
\end{equation*}
$$

In this homework, we study the motion of a spacecraft that leaves our Galaxy $(\chi=0)$ today $\left(t=t_{0}\right)$, with an initial velocity $\frac{d \ell_{\mathrm{phys}}}{d t}=\frac{d a(t) \chi(t)}{d t}=v_{0}$. We assume that all its fuel is used to generate the spacecraft's initial momentum, and that it follows a purely radial trajectory: $(t(\tau), \chi(\tau), \theta=$ const,$\phi=$ const $)$.

1. Show that

$$
\begin{equation*}
\dot{\chi}\left(t_{0}\right)=\frac{d \chi}{d t}\left(t_{0}\right)=\frac{v_{0}}{a_{0}} \tag{4}
\end{equation*}
$$

Use $-c^{2} d \tau^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$ to express $d \tau / d t$ as a function of a and χ :
(A) $\frac{d \tau}{d t}=\left(1-\frac{a^{2} \dot{\chi}^{2}}{c^{2}}\right)^{1 / 2}$
(B) $\frac{d \tau}{d t}=\left(1-a^{2} \chi^{2}\right)^{1 / 2}$
(C) $\frac{d \tau}{d t}=(1-a \chi / c)^{1 / 2}$
(D) None of the above
2. Express the initial values (at t_{0}) of $d t / d \tau$ and $d \chi / d \tau$
(A) $\frac{d t}{d \tau}_{\mid t_{0}}=1 \quad \frac{d \chi}{d \tau}=v_{0} / a_{0}$
(B) ${\frac{d t}{d \tau}{\mid t_{0}}=\left(1-\frac{v_{0}^{2}}{c^{2}}\right)^{-1 / 2} \quad \frac{d \chi}{d \tau}=\frac{v_{0}}{a_{0}} \frac{1}{\sqrt{1-v_{0}^{2} / c^{2}}}}_{1}$
(C) $\frac{d t}{d \tau}{\mid t_{0}}=\left(1-\frac{v_{0}^{2}}{c^{2}}\right)^{-1 / 2} \quad \frac{d \chi}{d \tau}=\frac{v_{0}}{a_{0}} \sqrt{1-v_{0}^{2} / c^{2}}$
(D) None of the above
3. Derive from the geodesic equation obeyed by the spacecraft trajectory the differential equations followed by $t(\tau)$ and $\chi(\tau)$:
(A) $\frac{d^{2} t}{d \tau^{2}}=-a \dot{a}\left(\frac{d \chi}{d \tau}\right)^{2} \quad \frac{d}{d \tau}\left(a^{2} \frac{d \chi}{d \tau}\right)=0$
(B) $\frac{d^{2} t}{d \tau^{2}}=1 \quad \frac{d}{d \tau}\left(\frac{d a}{d \tau} \frac{d \chi}{d \tau}\right)=0$
(C) $\frac{d^{2} t}{d \tau^{2}}=-a \dot{a} \dot{\chi}^{2} \quad \frac{d}{d \tau}\left(a^{2} \frac{d \chi}{d \tau}\right)=0$
(D) None of the above
4. Derive from the above one single differential equation $d \chi / d t=f(a, \chi, t)$. Write the limits of this equation for a slowly moving spacecraft $\left(v_{0} \rightarrow 0\right)$ and a spacecraft moving at relativistic speeds: $v_{0} \rightarrow c$.
(A) $\left(v_{0} \rightarrow 0\right) \dot{\chi}=\frac{a_{0} v_{0}}{a^{2}(t)} \quad\left(v_{0} \rightarrow c\right) \dot{\chi}=\frac{c}{a(t)}$
(B) $\left(v_{0} \rightarrow 0\right) \dot{\chi}=\frac{v_{0}}{a(t)} \quad\left(v_{0} \rightarrow c\right) \dot{\chi}=\frac{c}{a(t)}$
(C) $\left(v_{0} \rightarrow 0\right) \dot{\chi}=v_{0} \dot{a} \quad\left(v_{0} \rightarrow c\right) \dot{\chi}=\frac{a_{0}}{a^{2}(t)}$
(D) None of the above
5. We assume that we live in a matter-dominated Universe: $a(t)=a_{0}\left(t / t_{0}\right)^{2 / 3}$, with $t_{0}=(2 / 3) H_{0}^{-1}$. The spacecraft reaches a galaxy at $t=t_{1}$. What is the comoving distance $a_{0} \chi_{1}$ to this galaxy in the two cases above ($v_{0} \rightarrow 0$ and $v_{0} \rightarrow c$)?
(A) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{2}{H_{0}}\left(1-\left(\frac{t_{0}}{t_{1}}\right)^{2 / 3}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{2 c}{H_{0}}\left(\left(\frac{t_{0}}{t_{1}}\right)^{2 / 3}-1\right)$
(B) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{2 a_{0}}{H_{0}}\left(1-\left(\frac{t_{0}}{t_{1}}\right)^{1 / 3}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{2 a_{0}}{H_{0}}\left(\left(\frac{t_{1}}{t_{0}}\right)^{2 / 3}-1\right)$
(C) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{2 v_{0}}{H_{0}}\left(1-\left(\frac{t_{0}}{t_{1}}\right)^{1 / 3}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{2 c}{H_{0}}\left(\left(\frac{t_{1}}{t_{0}}\right)^{1 / 3}-1\right)$
(D) None of the above
6. Same question for a vacuum-energy-dominated Universe: $a(t)=a_{0} \exp H_{0}\left(t-t_{0}\right)$
(A) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{v_{0}}{2 H_{0}}\left(1-e^{-2 H_{0}\left(t_{1}-t_{0}\right)}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{c}{H_{0}}\left(1-e^{-H_{0}\left(t_{1}-t_{0}\right)}\right)$
(B) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{v_{0}}{H_{0}}\left(1-e^{-H_{0}\left(t_{1}-t_{0}\right)}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{c}{2 H_{0}}\left(1-e^{-2 H_{0}\left(t_{1}-t_{0}\right)}\right)$
(C) $\left(v_{0} \rightarrow 0\right) a_{0} \chi_{1}=\frac{c}{H_{0}}\left(1-e^{-2 H_{0}\left(t_{1}-t_{0}\right)}\right) \quad\left(v_{0} \rightarrow c\right) a_{0} \chi_{1}=\frac{v_{0}}{H_{0}}\left(1-e^{-H_{0}\left(t_{1}-t_{0}\right)}\right)$
(D) None of the above
7. For $t \rightarrow \infty$ and $v_{0} \rightarrow c$ is there a limit to the distance we can travel in (1) a matter-dominated Universe and (2) a vacuum-dominated Universe?
(A) Yes Yes
(B) Yes No
(C) No Yes
(D) No No
8. With the expansion of the Universe, the energy density of non relativistic matter falls like a^{-3} and the energy density of radiation falls like a^{-4}. Assuming $\Omega_{m, 0}=0.3$ (you know $\Omega_{r, 0}$ already, right ?), plot the evolution of ρ_{m} and ρ_{r} as a function of z. Draw on the plot the value of ρ_{m} at $z=3$. At which redshift were ρ_{m} and ρ_{r} equal ? What was their value?

