Master NPAC

Cosmology homework #4

Jan 5, 2023

For this homework, just write your answers clearly and legibly on a normal sheet of paper. If unsure, you may send me a scan of your solutions. Answers will be posted on Thursday January 12th.

1 Quintessence

Some cosmologists speculate that the universe may contain a quantum field called "quintessence" (from quinta essentia, the fifth element also named aether in Aristotle worldview). This quantum field has a positive energy density and a negative equation-of-state parameter $w_Q < 0$.

Let suppose that we live in a spatially flat universe, containing only matter ($\Omega_{m,0} \leq 1$) and quintessence with $w_Q = -1/2$ and $\Omega_{Q,0} = 1 - \Omega_{m,0}$.

- 1. At what scale a_{mQ} will the energy density of quintessence and matter be equal. Express it as a function of $\Omega_{m,0}$ and $\Omega_{Q,0}$.
- 2. What is a(t) when $a \ll a_{mQ}$? and when $a \gg a_{mQ}$?
- 3. Solve the Friedmann equation to find a(t) for this universe (without approximation).

Hints:

$$\int \frac{x^{1/2} \mathrm{d}x}{\sqrt{1 + \beta x^{3/2}}} = \frac{4}{3\beta} \sqrt{1 + \beta x^{3/2}}$$

- 4. What is the current age of this universe, as a function of H_0 and $\Omega_{m,0}$?
- 5. Describe the properties of a universe entirely made of quintessence $(\Omega_m \approx 0)$. What would be the current age of this universe, and the current particle horizon distance ?

2 Closed Universe

Consider a closed universe which contains only matter : $\Omega_0 = \Omega_{m,0} > 1$.

- 1. Describe briefly the properties of such a universe, its curvature, and its dynamics (a drawing may help).
- 2. Write the Friedmann equation for this universe. Compute the value a_{max} of the scaling factor a at maximum expansion.
- 3. Show that H_0 , Ω_0 and the current universe curvature radius a_0 are linked by:

$$a_0 = \frac{1}{H_0} \frac{1}{\sqrt{\Omega_0 - 1}}$$

4. Calculate the horizon distance $d_{\text{hor}}(t) = a_0 \chi_{\text{hor}}(t)$ as a function of time. Remember that the comoving coordinate χ_{hor} of the horizon at time t is defined by:

$$\chi_{\rm hor}(t) = \int_0^{a(t)} \frac{dt'}{a_0(t')}$$

Show that at the moment of maximum expansion $(a = a_{\max}, t = t(a_{\max}))$, the horizon includes the entire universe, *i.e.*:

$$\chi_{\rm hor}(a_{\rm max}) = \pi$$

Hints:

$$\int_{A}^{B} \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = \left[\arcsin(2x-1)\right]_{A}^{B} \qquad x = \frac{\Omega_{0}-1}{\Omega_{0}} \times a$$

5. Verify that the evolution of the universe may be described by the following parametric equations:

$$a(\eta) = A (1 - \cos \eta)$$
$$t(\eta) = B (\eta - \sin \eta)$$

Give the expression of A and B as functions of H_0 and Ω_0 . What is the value of η at maximum expansion? Describe briefly the resulting dynamics.

6. Show that the age of the universe at maximal expansion is:

$$t(a_{\max}) = \frac{\pi}{2} \frac{1}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}}$$

7. At some time $t_1 > t(a_{\text{max}})$ during the contraction phase of this universe, an astronomer named Edwin Elbbuh discovers that all nearby galaxies have blueshifts $(-1 \le z < 0)$ proportional to their distance; he measures as well $H_1 < 0$ and $\Omega_1 > 1$. Knowing $H_1 < 0$ and Ω_1 , how much time remains between t_1 and the final Big Crunch at $t = t_{\text{crunch}}$? What is the minimum blueshift our astronomer may observe?