Master NPAC
 Cosmology homework \#4

Jan 5, 2023

For this homework, just write your answers clearly and legibly on a normal sheet of paper. If unsure, you may send me a scan of your solutions. Answers will be posted on Thursday January 12th.

1 Quintessence

Some cosmologists speculate that the universe may contain a quantum field called "quintessence" (from quinta essentia, the fifth element also named aether in Aristotle worldview). This quantum field has a positive energy density and a negative equation-of-state parameter $w_{Q}<0$.

Let suppose that we live in a spatially flat universe, containing only matter ($\Omega_{m, 0} \leq 1$) and quintessence with $w_{Q}=-1 / 2$ and $\Omega_{Q, 0}=1-\Omega_{m, 0}$.

1. At what scale $a_{m Q}$ will the energy density of quintessence and matter be equal. Express it as a function of $\Omega_{m, 0}$ and $\Omega_{Q, 0}$.
2. What is $a(t)$ when $a \ll a_{m Q}$? and when $a \gg a_{m Q}$?
3. Solve the Friedmann equation to find $a(t)$ for this universe (without approximation).

Hints:

$$
\int \frac{x^{1 / 2} \mathrm{~d} x}{\sqrt{1+\beta x^{3 / 2}}}=\frac{4}{3 \beta} \sqrt{1+\beta x^{3 / 2}}
$$

4. What is the current age of this universe, as a function of H_{0} and $\Omega_{m, 0}$?
5. Describe the properties of a universe entirely made of quintessence $\left(\Omega_{m} \approx 0\right)$. What would be the current age of this universe, and the current particle horizon distance?

2 Closed Universe

Consider a closed universe which contains only matter : $\Omega_{0}=\Omega_{m, 0}>1$.

1. Describe briefly the properties of such a universe, its curvature, and its dynamics (a drawing may help).
2. Write the Friedmann equation for this universe. Compute the value $a_{\max }$ of the scaling factor a at maximum expansion.
3. Show that H_{0}, Ω_{0} and the current universe curvature radius a_{0} are linked by:

$$
a_{0}=\frac{1}{H_{0}} \frac{1}{\sqrt{\Omega_{0}-1}}
$$

4. Calculate the horizon distance $d_{\text {hor }}(t)=a_{0} \chi_{\text {hor }}(t)$ as a function of time. Remember that the comoving coordinate $\chi_{\text {hor }}$ of the horizon at time t is defined by:

$$
\chi_{\mathrm{hor}}(t)=\int_{0}^{a(t)} \frac{d t^{\prime}}{a_{0}\left(t^{\prime}\right)}
$$

Show that at the moment of maximum expansion $\left(a=a_{\max }, t=t\left(a_{\max }\right)\right)$, the horizon includes the entire universe, i.e.:

$$
\chi_{\text {hor }}\left(a_{\max }\right)=\pi .
$$

Hints:

$$
\int_{A}^{B} \frac{\mathrm{~d} x}{\sqrt{x(1-x)}}=[\arcsin (2 x-1)]_{A}^{B} \quad x=\frac{\Omega_{0}-1}{\Omega_{0}} \times a
$$

5. Verify that the evolution of the universe may be described by the following parametric equations:

$$
\begin{aligned}
a(\eta) & =A(1-\cos \eta) \\
t(\eta) & =B(\eta-\sin \eta)
\end{aligned}
$$

Give the expression of A and B as functions of H_{0} and Ω_{0}. What is the value of η at maximum expansion? Describe briefly the resulting dynamics.
6. Show that the age of the universe at maximal expansion is:

$$
t\left(a_{\max }\right)=\frac{\pi}{2} \frac{1}{H_{0}} \frac{\Omega_{0}}{\left(\Omega_{0}-1\right)^{3 / 2}}
$$

7. At some time $t_{1}>t\left(a_{\max }\right)$ during the contraction phase of this universe, an astronomer named Edwin Elbbuh discovers that all nearby galaxies have blueshifts $(-1 \leq z<0)$ proportional to their distance ; he measures as well $H_{1}<0$ and $\Omega_{1}>1$. Knowing $H_{1}<0$ and Ω_{1}, how much time remains between t_{1} and the final Big Crunch at $t=t_{\text {crunch }}$? What is the minimum blueshift our astronomer may observe?
