2. The smooth expanding Universe

At the starting point of modern observational cosmology is the extraordinary real-
ization that we live in an expanding Universe. This discovery profoundly changed
our vision of the Universe, primarily by re-introducing a beginning of times, an
arrow of time, and the notion that the properties of the Universe had to change
over the course of its history. The astrophysicist Edwin Hubble gets most of the
credit for the discovery of expansion, and this is certainly well deserved, although,
like always, the work of Hubble was built on the contributions of many others (e.g.
Slipher, Lemaitre).

To describe the expansion, we need a theory of gravity: without any evidence that
the Universe is globally or locally charged, the only known long range force, which
can govern the dynamics of cosmic expansion is gravity. We have seen in class
that Newtonian gravity allows us to obtain an unexpectedly good description of
the expansion. However, Newtonian gravity describes an instantaneous action at
a distance, which is incompatible with a system were mass overdensities (galaxies,
clusters) are millions of light years apart, and interactions typically propagate at
the speed of light. Fortunately, we have a relativistic theory of gravity, General
Relativity, which was elaborated shortly before the discovery of cosmic expansion.

In this lesson, we seek a general relativistic description of the expanding Universe.
Despite its elegance and simplicity, General Relativity can lead to intimidating
computations. Quite fortunately for us, the Universe, beyond scales of ~ 100 Mpc
can be described as a smooth, homogeneous, isotropic fluid in expansion, which
simplifies its mathematical description tremendously.

An outline of the chapter follows. We first examine §2.1 the symmetries that
apply well to the Universe on the largest scales, and show that they imply that the
expansion law has a very simple form. We then define §2.2 a coordinate system
particularly well suited to the description of the expanding Universe, and derive
in these coordinates, the Friedmann-Lemaitre-Robertson-Walker metric, (only)
metric that follows the symmetries described above (§2.3). With the metric in
hand, we can study the trajectories of free particles (also known as geodesics), in
particular, the trajectories of photons (§2.4). Knowing the photon trajectories,
we can predict (§2.8) how distant sources appear to us, and derive observables, in
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particular, the flux and apparent angular size of objects of known luminosity or
size.

2.1. Isotropy, homogeneity, expansion

Our description of the Universe on the largest scales starts with three fundamental
observational facts: from our point of view, the Universe appears to be isotropic
(very), homogeneous (quite) and of course, in expansion.

The most striking evidence for isotropy comes from the spectral properties of the
Cosmic Microwave Background (CMB). The CMB temperature uniform on the
sky to about 1 part in 10°. Galaxy counts, performed in the visible or the infrared
support this evidence. They also show that the Universe does not seem to display
structures larger than a few dozen Mpc — i.e. beyond a typical scale of ~ 100
Mpc the Universe appears quite homegeneous. Note that homogeneity does not
imply isotropy: for example, we can consider a homogeneous Universe, with a
non-isotropic expansion field or matter following a global rotation motion. Nor
does isotropy imply homogeneity: it is easy to imagine a Universe in expansion
around us, with a density field p(r) and velocity field v(r) that depends uniquely
on the radial distance to our galaxy. This latter model would imply that we live
at a very special place.

Most scientists dislike this idea, and to be frank, there is nothing observationally
special with our star or with our Galaxy. As a consequence, we add to our de-
scription the requirement that the Universe should look the same to all observers.
This is called the Copernican Principle.

The Copernican principle is a very strong symmetry. We have seen in class that
the combination of isotropy with the Copernican principle implies homogeneity: if
two observers A and B located in different galaxies measure a radially dependent
(isotropic) distribution of matter p4(r) and pg(r), it is easy to see that p must be
constant everywhere in the Universe.

We have also seen that the Copernican principle contraints very strongly the form
of the expansion law. If we describe the velocity field around an observer by:

v =H(r, 1) (2.1.1)
then, it is easy to see that h is a linear operator for r:

v=H() r (2.1.2)
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If we decompose H into its symmetric and anti-symmetric parts:
H(t)=%X(t) - r+ Q(t) Ar (2.1.3)

Isotropy requires that €2 be zero (otherwise, we would see a prefered direction on
the sky. It also implies that eigenvalues of ¥ are equal (otherwise, we would see a
non-isotropic expansion in prefered directions).

As a consequence, the expansion law must take the very simple form, for all ob-
servers:

v=H(t) r (2.1.4)

2.2. Comoving coordinates

It is important to note that not all observers see the Universe as isotropic, only
the so-called comoving observers, which are locally at rest with the bulk of matter
in their vicinity. We, for example, are not comoving observers: when we look at
the CMB temperature, the first feature we see is a large dipole, which is the result
of the peculiar motion of our Galaxy (and our galaxy group). However, it is easy
enough to figure out the appropriate boost which would turn us into comoving
observers.

A metric depends on the choice of a coordinate system. Although we are quite
free to choose whichever coordinate system we like, is it quite obvious that the
metric has strong chances to be simpler in coordinates attached to the comoving
observers. These classes of coordinates are called co-moving coordinates. There
is a lot of freedom in the choice of the comoving coordinates: in particular, eu-
clidean coordinates (¢, z, y, z) and spherical (polar) coordinates (t,r, 0, ¢), with the
observer (ourselves) at the origin.

Time deserves a special mention. In our ideal Universe, with no matter over/un-
derdensities, all clocks following the expansion (i.e. with no peculiar motion) tick
at the same rate. With an infinite amount of time at our disposal, we can propa-
gate a common convention to synchronize our clocks: for example, when the CMB
temperature reaches a given value. Hence, it is possible to define a cosmic time,
common to all free falling observers.

2.3. The FRLW metric

Let’s start from the general expression for the metric:

ds® = —c*dr* = g, dxtdz” (2.3.1)
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where the dx* denote comoving coordinates. All observers use the same time, and
we have go; = gio otherwise, there would we a preferred direction in space, which
would violate isotropy, therefore, the general form for the metric is:

-2 0 0 0
0 71 72 73
L, = 2.3.2
In 0 721 722 723 ( )
0 31 732 733

So, the problem is now to obtain the metric for the 3-D spatial slices. Homogeneity
and isotropy require that these spaces are maximally symmetric, i.e. of constant
curvature (everywhere). In the most general case, the curvature tensor of a 3D
space ;i has 6 independent components, each of which being a function of the
coordinates. A maximally symmetric space is characterized only by one constant
number, its curvature. It is possible to show (see Weinberg, chap 13 for example)
that we have 3 possible maximally symmetric spaces:

1. ds? = |dx|* = ddxida?, i.e. the 3D Euclidean space. The scalar curvature
is zero (flat space).

2. ds? = |dx|* + dw?® with the constraint that x> + w? = a2. This is a 3-sphere
of radius a, embedded in a 4-dimensional Euclidean space.

3. ds? = |dx|” — dw? with the constraint w? —x2 = 2. This is a 3-hyperboloid,
embedded in a 4-dimensional pseudo-Euclidean space.

Let’s examine in more detail the two last cases. First, we can rescale x < ax and
w <— aw, and rewrite the line element in a more compact form:

ds3 = |dx|* £ dw?, with |[x|*+w?® =1 (2.3.3)

differentiating the second equation and subtituting w and dw, we obtain:

- dx)?
ds? — a? (|2 4 X 9X)° 2.3.4
= (Jox 2 D 2:3.4)

We can write write this in an even more compact form, that comprises the Eu-
clidean case:

2 _ 2 2 (x - dx)?
with
+1 3 — sphere
K =4 0 3D — euclidean (2.3.6)

—1 3D — hyperboloid
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Allowing a to be a function of time, and putting everything together, we get
the general expression for the metric of a isotropic and homogeneous 3-space in
expansion:

-d 2
ds® = —c2dt* + a*(t) (dx2 + Kix_;;) (2.3.7)
So, the components of the metric, this these coordinates are:
C 2 o= 0, gy —a2(t) [0+ K0 2.3.8
goo =—¢ gio =0, gij =a"(t) |y + 11— Kx? (2.3.8)

In spherical polar coordinates, the metric has a slightly different form:

dr?

2 2 7,2 2
dS = —C dt +a (t) <]_—_[(7”2

+ 7%(df? + sin? 9d¢2)> (2.3.9)

In these coordinates, the components of the metric are:

—c? 0 0 0
0 a?*(t)/(1—Kr? 0 0
I = | Ol 0 ) a?(t)r? 0 (2.3.10)
0 0 0 a*(t)r*sin? 0

A last useful coordinate system we have seen in class, consists in using, instead of
r the angular coordinate y, defined as:
sintr fK=1
X=Ar it K=0 (2.3.11)
sinh 'r if K =—1
In these coordinates, the same metrics can be written as:
ds* = —c*dr? = —*dt* + a*(t) (dx2 + S%(x) (d92 + sin? 9d¢2)) (2.3.12)
with
sin y ifK=1
Sk(x) =1 x if K =0 (2.3.13)
sinhy if K =—1

and again, the metric is diagonal, with:

-2 0 0 0
| 0 &) 0 0
0 0 0 a®(t)S%(x)sin? 6
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In conclusion: the situation is much simpler than what we could have expected.
We are left with only one unknown component: a(t), the scale factor that describes
the expansion as a function of cosmic time. And, there are coordinates systems in
which the metric is diagonal, which will spare us a lot of effort.

2.3.1. Christoffel connections

Now that we have a metric, we can compute the Christoffel symbols, for example
in the (¢,7,60,¢) coordinates. In these coordinates, the metric is quite simple (in
particular it is diagonal) and the computation turns out to be easy. We have seen
in class that all connections with two spatial indices vanish:

Fgo =0, sz - P?O =0, Féo =0 (2.3.15)

and we have computed the two non-vanishing connections with timelike indices:

aa _ i i a
Iy = 0y and T =Tg; = =4 (2.3.16)

Exercise 2.3.1. Compute all the I'’s and show that:

0 0 0 0
o |0 aa/[2(1 — kr?)] 0 0
ap 0 0 aar?/c? 0
0 0 0 aar? sin? 0/ c*
0 aja 0 0
o a/a kr/[1— kr? 0 0
10 0 —r/[1 — kr?] 0
0 0 0 —r(1 — kr?)sin?6
. (2.3.17)
0 0 af/a 0
po_|o 0 0
" lafa 1/r 0 0
0 0 0 —sinfcost
0 0 0 afa
R R VA
10 0 0 cotd

afa 1/r cotf 0
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2.4. GEODESICS OF THE FRLW METRIC 19

2.4. Geodesics of the FRLW metric

Now that we know the metrics and its connections, we can compute the geodesics
of massive and massless particles. We are particularly interested in the geodesics
of photons, which (so far) are our only messengers.

Let z#(A) be the wordline of the particle, where A is an affine parameter, and
u” = dx* /d\ the 4-velocity of the particle. The geodesics equation is:

W+ Thpuu’ =0 (2.4.1)

There is another form for the geodesic equation, which is:

. 1 N
Uy, = 5(8Mga5)u u (2.4.2)

This second form is quite useful, because it tells us that if the metric is independant
of a particular coordinate, 2#, then u, is constant over the geodesics.

Since the metric is isotropic and homegeneous, we can choose our origin anywhere.
It is quite convenient to pick it somewhere on the geodesics itself. Let’s first
consider the ¢-component of the 4-velocity, u®. The metric does not depend on
¢, we immediately see that ug is constant. uz = gssu® = a2S%(x2)sin? fud. us
does vanish at the origin, where y = 0, and therefore is zero everywhere on the
geodesics. We can then consider the § component. The only metric component
that depends on 6 is ¢33 = a?r?sin? 6, but since u? is zero, 1, also vanishes. Again,
uy = gpu® = a?S%(x)u? is zero at the origin and therefore everywhere on the

geodesics. As a consequence, the geodesics that pass though the origin satisfy:

‘9 = constant, ¢ = constant‘ (2.4.3)

Similarly, we find that, for the first component u; = g;u' = a?(t)x = constant,
and so:

a®(t)x = constant (2.4.4)

Finally, we can get the first component u® = dt/d) from the normalization of the
4-velocity:

Gt = 0 for masslegs particl‘es (2.4.5)
—c? for massive particles
and we
. 1 2.y, /2
2 { N QQX/C (2.4.6)
a*x/c
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/-[Are fundamental observers in free fall ?} ~

Let’s consider an observer, that is at rest at ¢y in this coordinate system.
Her 4-velocity at tq is therefore u* = daz*/dX = (1,0,0,0). Since 'y, always
vanishes, it is easy to see from 2.4.1 that u" stays constant. The comoving
observers experience no acceleration. They are free falling observers. Fur-
thermore, the proper time of such observers is just dt, the time measured by
a comoving clock.

2.5. Cosmological redshift

Let’s look in more detail at the photon geodesics. We chose the origin of the
coordinate system so that it coincides with our our observatory. We are interested
only in the photons we can detect (hence, which intercept the origin). These
photons follow the null geodesics:

ds® = 0= —c2dt* + a*(t)dy (2.5.1)
since # = constant and ¢ = constant. Therefore:
dt
dy = £ - (2.5.2)

a(t)

and since we are only interested in the photons that are coming towards us (x < 0):
cdt

dy = ——= 2.5.3

X= a0 (2.5.3)

If we consider a photon that was emitted by a distance galaxy at ¢; and detected

by us at ty > t1, we have:
o cdt
X = / o (2.5.4)
t1

Now, let’s note A\; (resp Ag) the wavelength of the photon at emission (resp recep-
tion), 0ty (resp dtg) the time interval between two crests of the electromagnetic
wave at emission (resp reception). Then, since the comoving coordinates of the

galaxy do not change:
to dt to+dto dt
X = / o / o (2.5.5)
t1 a’(t) t1+0t1 a(t)

Decomposing and re-arranging the integrals we obtain:

bty oy totdto oy
R 259
t to

,a)
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and neglecting the variations of a(t) over the (short) integration interval:

Qg Ao
—=—=1 2.5.7
PR W (2.5.7)

In an expanding Universe, the photons get redder as they travel. This phenomenon
is what we call cosmological redshift. It can be measured with a spectrograph,
taking advantage of the source emission or absorption lines. A very nice thing, it
that it is directly connected to the relative variations of the scale factor a between
absorption and emission. For example, at a redshift z = 1, the typical distances
between galaxies were 50% smaller than they are today.

2.5.1. Time dilation

In a similar way, we can consider two events taking place in a distance galaxy at
times ¢; and t; + 0t;. These events are luminous and each emits a flash than we
can detect later in our galaxy, at ty and to+ 0tg. With a similar reasoning, we find
that:

(Sto . ao

5t1 N aq
So, again, events taking place in a distant galaxy with appear slower to us. This
phenomenon is called “time dilation”.

(2.5.8)

2.6. Cosmography

In what follows, we will label the present epoch with a ¢ subscript, and coordinates
of distant emitting objects with a | subscript. So, we observe (today, at time ¢y) a
galaxy located at a radial coordinate x;. At what time ¢; < ¢, were these photons
emitted ? Or equivalently, how long did it take to the photons to reach us ? This
quantity: ot =ty — t; is often called the “lookback time” in cosmological texts.

Equation 2.5.4 gives the link between events connected by photon geodesics, pro-
vided that we know the history of the expansion (i.e. the variations of a(t), which
in turn, depend on the densities and pressures of the various fluids which populate
the Universe).

We do not know yet how to compute that (this will be done in the next lesson).
However, if the galaxy is not too distant, or, equivalently, if the photon travel time
is small compare to the age of the Universe, if 6t =ty — t; < ty, we can develop
a(t) as a function of dt.
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a(t) = a(ty) — a(te)(to — t1) + ;d(to)(to — 151)2 — ... (2.6.1)
which can be rewritten:
a(t) = Qo [1 — H()(to — tl) — ngo(to — t1)2 — .. } (262)

where we have defined the Hubble parameter:

H(t)= o Hy = H(to) (2.6.3)
and the deceleration parameter:
La(t)a(t)
t) = —= =q(t 2.6.4

Note that we could have developed a(t) at higher orders and defined the corre-
sponding parameters. We do not need them here, but there is a lot of (mostly
historical) litterature about higher order developments of a(t).

So, we have a relation between the redshift (which we can observe) and the look-
back time:

a

This is all very nice, but it would be more interesting to derive the lookback time
(which we cannot directly measure) from the redshift. Do do this, let’s invert
the power series above. How do we do that ? All we need are the values of
dt/dz and d*t/dz?, to invert this series up to order 2, we just need the first and
second derivatives ¢(z) at ¢ = t;, which we can derive from %(t;) = H;' and
d*z/dt* = 2(1 + qo)H?. — remember that that f= = 1/f and f= = —f"/f".
We this, we get:

z 1
to—tlzﬁ {1—(14—2%)2—1—...} (2.6.6)
0

Exercise 1: we observe a nearby galaxy and determine its redshift: z = 0.12.
When were the galaxy photons we observe today emitted 7

We can do the same with the radial coordinate y:

fo cdt
X:/t1 ) (2.6.7)

From equation 2.6.2 above we get:

1 1
at) ;0[14'(750—751)[{0‘1‘--‘] (2.6.8)
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which gives

X~ = [+ H(to—u) + .. ]du (2.6.9)
~ £ |(to—t) + §Ho(to — t1)* + .. ] (2.6.10)

plugging in the expression of the lookback time we got above, and keeping only
the order=2 terms:
L [1 Lt o)+ } (2.6.11)
=——|1—-= Z4 ... 6.
X a0 Hy 5 do

So, again, knowing the expansion history to some order, we can map the redshift
(which we can observe) to the proper distance (i.e. the distance which we would
measure with a tape meter, if we could freeze the expansion and take our time to
measure it) agy of a distant object. Conversely, if we know the proper distances
and redshifts of a collection of cosmological objects, we can try and infer Hy and
qo- This is a game cosmologists have tried to play between the 1930’s and the late
1980’s without much success (using something more measurable than the proper
distances), until they learnt how to use type la supernovae as precise distance
indicators.

2.7. Mapping coordinates with redshift

So far, we have worked with the Taylor series of a(t), which is valid only at low-z
(or lookback times that are small compared to the age of the Universe). Of course,
there are exact expressions, that connect the lookback time and radial coordinate
with the redshift. All we need is equation 2.5.4 and a change of variable:

ao da ap a
— d(1 — 2= g — = 2 Zdt = —(1 H 2.7.1
dz = d(1 + 2) d(a> aiy =20 = —(1+)HEA  (271)

which gives:

to—t1 — / a= | (e e (272)

And for the radial coordinate of the emitting object:

o edt 1 Z cdz
— _ 2.7.3
x / W0 a0 )y T (2.7.3)

If there is one thing you need to remember from this class, equations 2.7.2 and
2.7.3 are on top of the list. Please remember where they come from, and commit
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them to memory. You'll need them more than once in the future if you ever do
observational cosmology. They are important because they connect the expansion
history ([ dz/H(z)dz) with possible observables (z, the lookback time or some
distance to the object). They are at the core of the classical cosmological tests.

2.8. Distances and volumes

Measuring distances in an expanding Universe is tricky. First, because of the
expansion, and the finiteness of the speed of light, we can come up with many
definition of the distance between to galaxies, which have moved apart between
the times of photon emission and detection. Furthermore, it is easy to come up
with definitions of distances which are not practical or simply measurable. In this
section, we discuss distances and volumes, and focus on two practical ways to
define the distance to an object.

2.8.1. Proper distance

Let’s imagine that we freeze the expansion, and are allowed to wander the Universe
with a measuring tape. Then, what we measure are the “proper distance” between
objects. For example, let’s consider a galaxy at coordinate x (we still take the
origin of our coordinate system at our observatory). The proper distance to that
galaxy is:

* cdz

d=a(ty) x = (2.8.1)

\ag_/ 0 H(Z)

unfortunately, proper distances cannot be measured in practice. We can infer them
once we have a model of the Universe (the function H(z), which is ultimately
something we measure).

2.8.2. Angular distance

Let’s turn to something we can measure. Imagine we observe an object of proper
transverse size df, and placed at radial comoving coordinate y. And let’s consider
the radial geodesics connecting the two ends of the object with the observer. The
observer will measure an angle df on the sky.

The metric at the time of emission allows to connect the proper size of the object,
with the angular separation measured on the sky:

dl = a(ty)Sk(x)do (2.8.2)
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or equivalently:
a

1+2
From this, we can define an “angular distance”, as we would do in a Euclidean
Universe:

dt Sic(x)df (2.8.3)

drl B a()SK(X)

d = —_—
AT p 1+ 2

(2.8.4)

Note that the angular distance does not correspond directly to the radial part
of the metric (x) but to the transverse part Sk (x). As we will see later in this
class, it is used a lot in observational cosmology today, in the framwork of BAO
measurements.

2.8.3. Luminosity distance

We now turn to another practical way to measure cosmological distances: we can
compare the luminosity (£) of an object with the flux f we measure on earth.
Luminosity and flux are not the same thing. We call luminosity is the energy, or
the number of photons emitted per unit second in all directions (47). The flux
is the energy (or number of photons) detected per second and per unit surface
(i.e. what we measure in practice with a telescope). To fix ideas, let’s say that we
measure luminosities in W = J/s and fluxes in W/m?.

So, let’s consider a source, at comoving coordinate y, that emits N photons during
a time interval At;. To simplify things, we assume that all these photons have the
same energy E; (at emission time). The luminosity of the source is:

_ NE

L= Aty

(2.8.5)

These photons are detected much later on Earth, with a telescope of primary
mirror area dA. The flux is a function of (1) the energy of the incoming photons
Ey/(1 + z) (remember the redshift?) (2) the time interval during which these
photons arrive (1 + 2)At; (time dilation, remember ?) and (3) the fraction of the
sphere of diameter agy covered by our primary mirror.

The surface element of a sphere of radius y is:
dA = dlydly = a3 S7 (x) sin 0dOdg (2.8.6)
integrating on 6 and phi, we get:

A = 4ralS%(x) (2.8.7)
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Putting everything together, we can write the source flux (energy per second per
unit area):

o NE,
 47madS%(x) x Aty

B 1 NE/(1+2)
 4ma3S%(x) 8 Aty x (1+ 2)
o 1

T AnaSi(0) " (1 2P

f

(2.8.8)

If we define the luminosity distance dj,, as we would do in a Euclidean space:

L
S 2.8.9
/ dmed3 ( )

and identify with equation 2.8.8, we obtain:
dr = apSr(X)(1 + 2) = da(1 + 2)° (2.8.10)

This is our second operational definition of a cosmological distance: if we know the
luminosity of a source, then measuring it flux today allows us to infer the luminosity
distance. Again, the luminosity distance probes the transverse part of the metric
(not x but Sk(x)). Luminosity distances have played a very important role in
observational cosmology when people realized that type la supernovae (SNe Ia),
i.e. thermonuclear explosions of white dwarfs are excellent standard candles (i.e.
have all the same luminosity, with a small dispersion). In the late 1990’s SNe Ia
have allowed to map the expansion history of the Universe beyond the Hubble law,
and to discover the acceleration of cosmic expansion.
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