
3. The Friedmann equations

Up to now, we have studied the geometric and kinematic properties of the FRLW
metric. But we still have to determine the evolution of a(t) (the only unknown
left in the metric), i.e. we need to solve the Einstein equation:

Rµν − 1
2Rgµν = 8πG

c4 Tµν (3.0.1)

which connects the metric and its first and second derivatives with the energy-
momentum tensor of the matter and radiation that fills the Universe.

In §3.1 we compute the non-zero components of the Einstein tensor. We then
(§3.2) discuss the structure of the energy-momentum tensor, on the right hand
side of the field equation. Putting all together (§3.3), we obtain the Friedmann
equations. We give an explicit relation for the history of expansion, H(z) as a
function of the cosmological parameters 3.4 and observable quantities 3.5. We
present a few textbook solutions of the Friedmann equation (§3.6).

3.1. The Einstein tensor
Our first step is to compute the non-zero components of the Einstein tensor. This
is a little tedious, but really there is no trap and subtleties.

We start with the components of the Ricci tensor:

Rµν = Γα
µν,α − Γα

µα,ν + Γβ
µνΓα

βα − Γβ
µαΓα

βν (3.1.1)
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Computing R00 turns out to be relatively easy:
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ȧ

a
δi

i

�
−
"�

ȧ
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The R0i’s vanish:

R0i = Ri0 = Γα
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ȧ

a

� h
δj

i Γk
jk − δk

j Γj
ik

i

=
�

ȧ
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(3.1.3)

The only difficult part are the Rij. It is possible to compute them from the
connections given in 2.3.17. The computation is long and I don’t have the time to
type it here today. So, here is the result:

Rii =
�
äa + 2ȧ2 + 2k

�
g̃ii
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a
+ 2
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ȧ

a

�2
+ 2k
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!
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(3.1.4)

The last bit is the Ricci scalar:

R = gµνRµν

= −R00 + g11R11 + g22R22 + g33R33

= 3 ä
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+ 3
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(3.1.5)
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With all of this in hand, it is now straightforward to compute the Einstein tensor:

G00 = R00 − 1
2Rg00

= 3
�

ȧ

a

�2
+ 3k

a2

(3.1.6)

Gii = Rii − 1
2Rgii

= −
 

2 ä
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�
ȧ

a

�2
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!
gii

(3.1.7)

3.2. The Energy-Momentum tensor
We have seen in class that the energy density of a fluid is not a scalar. A covariant
description requires a rank-2 tensor. Comoving observers, in the frame of the fluid,
see it as an isotropic continuum. Isotropy and homogeneity dictate that:

T µν =




ρ(t)c2 0 0 0
0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)


 (3.2.1)

or equivalently:
T µν = (ρc2 + p)uµuν + pηµν (3.2.2)

T µν is a tensor, since uµ is a tensor, and ρ and p are defined in the fluid restframe.
In any coordinate system, T µν can be written as:

T µν = (ρc2 + p)UµUν + pgµν (3.2.3)

The energy-momentum tensor obeys a conservation equation of the form T µν
;ν = 0,

where the semi-colon denotes the covariant derivative:

T µν
;ν = T µν

,ν + Γµ
αβT αβ + Γβ

αβT µα (3.2.4)

The spatial terms T iν
;ν do not contain useful information. On the other hand, the

T 0ν
;ν term yields the so-called continuity equation:

ρ̇ + 3 ȧ

a
(ρ + p/c2) = 0 (3.2.5)
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Exercise 1: Compute T 0ν
;ν and show that it yields the continuity equation.

The density and pressure of a fluid are related by an equation of state. We assume
that all cosmological fluids have an equation of state which is simple, and can be
written as:

p = wε = wρc2 (3.2.6)
Combining the continuity equation (3.2.5) and the equation of state of the fluid
(3.2.6), we obtain:

ρ ∝ a−3(1+w) (3.2.7)

giving the evolution of the fluid density (and pressure) as a function of the scale
factor. As we see, the evolution of the density depends on the physics of the
fluid, encoded in the equation of state. For example, for example, for pressureless
non-relativistic matter (w = 0), radiation w = 1/3 and a cosmological constant
(w = −1), we have respetively:

ρ ∝





a−3 non-relativistic matter(w = 0)
a−4 radiation(w = 1/3)
a0 cosmological constant(w = −1)

(3.2.8)

The cosmological fluid may have multiple components (matter, radiation, ...)
present at the same time. If we assume that they do not interact, then, we may
write T µν as:

T µν =
X

a

T µν
(a) (3.2.9)

If in addition, they are all perfect fluid, and share the same velocity field, then,
using 3.2.3, we see immediately that:

ρtot =
X

a

ρa p =
X

a

pa (3.2.10)

Finally, if again, the fluids do not interact together, the continuity equation holds
for each fluid separately, which means that each fluid will obey an evolution equa-
tion of the form: ρa ∝ a−3(1+wa) and evolve independentely of the other compo-
nents.

3.3. Friedmann equations
Putting together the lhs and rhs computed in the two previous sections, we obtain
4 equations. We notice that the 3 spatial components are redundant, and we end
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up with two equations, relating the derivatives of a and the pressures and densities
of the various fluids:

�
ȧ

a

�2
+ Kc2

a2 = 8πG

3c2 ρc2 Friedmann-I

ä

a
= −4πG

3c2 (ρc2 + 3p) Friedmann-II
(3.3.1)

So, in the end, with one fluid, we have 3 unknown functions: a(t) the density ρ and
pressure p of the fluid, and we can think of four constraints: the two Friedmann
equations, the continuity equation and the equation of state. In fact, these four
constraints are only 3, because the continuity equation is already contained in the
Friedmann equations, as we have seen in class. So, the two Friedmann equations
are actually redundant.
Exercise 2: Derive the continuity equation from the Friedmann equation. Hint:
take the time derivative of the first Friedmann equation. After some re-
arrangement, you’ll be able to substitude the ä/a and k/a2 terms by injecting
the Friedmann equations.

Similarly, with n fluids, we have 1+2n unknowns, and 1+2n equations to constrain
these unknowns (1 continuity equation and one equation of state per fluid), and
the Friedmann equations are:

�
ȧ

a

�2
+ Kc2

a2 = 8πG

3c2 c2X

i

ρi

ä

a
= −4πG

3c2 (c2X

i

ρi + 3
X

i

pi)
(3.3.2)

Enters the cosmological constant Finally, as we have seen in class, there is
an additional ingredient we need to talk about. One of the original forms of the
Einstein equation is:

Rµν − 1
2Rgµν + Λgµν = 8πG

c4 Tµν (3.3.3)

where Λ is the cosmological constant, introduced by Einstein to obtain a static
solution for a homegeneous universe, before the discovery of the expansion. The Λ
term did the job, without breaking the zero-divergence of the lhs of the equation.
The static solution obtained was unstable though, and the Λ term was rejected
after the discovery of cosmic expansion. The corresponding Friedmann equations
are:
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�
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a
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(3.3.4)

It is possible to interpret the Λ term as another energy density. If we define:

ρΛ = Λc2

8πG
, pΛ = −ρΛc2 (3.3.5)

then, the Friedmann equations above can be rewritten as:
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(3.3.6)

So Λ may be interpret as a fluid of density Λc2/8πG and of negative pressure, with
an equation of state:

pΛ = −ρΛ (3.3.7)
The continuity equation gives:

ρΛ ∝ a0, and soρΛ(t) = ρΛ(0) = Λc2

8πG
(3.3.8)

so, such a fluid has an energy density which is constant as a function of time, and
is generally identified with a non-zero vacuum energy.
Exercice: From the second Friedmann equation, write a necessary condition on
ρΛ to have a static Universe. Is the corresponding solution stable ? Why ?

As we said above, the cosmological constant was rejected as unnecessary after the
discovery of cosmic expansion. However, at the turn of the century, Λ came back as
two groups of cosmologists announced to have discovered an acceleration of cosmic
expansion. The fact is that Λ has the power to do that also. Indeed, let’s consider
for example a Universe with non relativistic matter (density ρm) and radiation:

ä

a
= −4πG

3c2 (ρm + ρΛ +��3p + 3pΛ) = −4πG

3c2 (ρm − 2ρΛ) (3.3.9)
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3.4. Standard form of the Friedmann equation 33

and we see that cosmic expansion is accelerated if ρΛ > ρm/2.

This result has been confirmed by many independent surveys using many different
techniques (BAO’s, SNe Ia’s, ...). However, there are however many theoretical
problems with a vacuum energy, the first being that the vaccum energy measured
by cosmologists is 120 orders of magnitudes below the estimates that can be drawn
from field theory. Given the uncertainty on the nature of this repulsive term, it is
customary to extend the model, and consider a “Dark Energy” fluid, X, with an
unknown equation of state pX = wXρX .

In the remainder of this section, we will consider a Universe, filled with (1) non
relativisitc matter ρm (w = 0) (2) radiation, i.e. photons and/or relativistic neu-
trinos, ρr, w = 1/3) and Dark Energy ρX , (wX).

3.4. Standard form of the Friedmann equation
We are now in a position to determine the dynamical evolution of the Universe. As
we have seen, we need to use one of the Friedmann equations, plus the equations
of state and continuity equation for each of the fluids in the Universe. Let’s start
from the first Friedmann equation:

�
ȧ

a

�2
+ Kc2

a2 = 8πG

3c2 ρc2

H2 + Kc2

a2 = 8πG

3c2 ρc2

H2
�

1 − 8πG

3H2 ρ
�

= −Kc2

a2

(3.4.1)

8πG/3H2 has the dimensions of an energy density, and is called the “critical den-
sity”. As we have seen in class, it customary to express the energy densities in
units of the critical density:

ρc(t) ≡ 8πG

3H2 , Ωi(t) = ρi(t)
ρc(t)

(3.4.2)

and so, we have:

H2 (1 − Ω(t)) = −Kc2

a2 (3.4.3)

We see that there is a direct connection between the critical energy density and
the geometry of the Universe, as the curvature will be respectively positive, zero
or negative if Ω > 1, Ω = 1 or Ω < 1 respectively.
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Today, we have:
H2

0 (1 − Ω0) = −Kc2

a2
0

(3.4.4)

so, we have an expression of the curvature as a function of H0 and the total density
today.

Starting from:
H2 = 8πG

3 (ρm + ρr + ρX) − Kc2

a2 (3.4.5)

we can substitute the value of K and the evolutions of the densities of the various
fluids:

H2 = 8πG

3 (ρm + ρr + ρX) − Kc2

a2
0

a2
0

a2

= 8πG

3

 
ρm,0

�
a0

a

�3
+ ρr,0

�
a0

a

�4
+ ρX

�
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a
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+ H2
0 (1 − Ω0)

a2
0

a2

= H2
0

�
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩX,0(1 + z)3(1+wX) + (1 − Ω0)(1 + z)2

�

(3.4.6)

This is the standard form of the Friedmann equation, which connects the evolution
of the Hubble parameter H(z) with the densities today. We generally drop the ’0’
subscripts, and define ΩK = 1 − Ω0, which gives:

H(z) = H0
h
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩX(1 + z)3(1+w) + ΩK(1 + z)2

i1/2

(3.4.7)

Have we made any progress ? Yes, of course ! We have a prediction for H(z) as a
function of the matter, radiation and dark energy densities today, we have a good
idea of how these densities evolve with z. And above all, we can use the expression
of H(z) above to compute distances, in other terms, we can connect the evolution
of cosmic expansion to quantities which can all be observed.

3.5. Distance-redshift relations
Remember equation 2.7.3. We can write it as:

χ = 1
a0

ˆ z

0

cdz

H(z)

= c

H0

q
−K/ΩK

ˆ z

0

cdz

H(z)
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If we know the Ω’s, we have an expression for H(z), hence, we know how to map
redshifts to radial coordinates:

For example, the angular distance:

dA = a0SK(χ)
(1 + z) (3.5.1)

can be rewritten as:

dA =
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q
−K/ΩK sin
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!
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H(z) if K = 0

c
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q
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H0

q
−KΩK

ˆ z

0

dz

H(z)

!
if K < 0

(3.5.2)

We get a similar expression for dL(z) = (1 + z)2dA(z).

3.6. Integrating the Friedmann equation for simple
cases

When the energy densities are dominated by one single component, it is quite easy
to integrate the Friedmann equation and get the evolution of a as a function of
cosmic time.

Let’s define:
x ≡ a

a0
= 1

1 + z
(3.6.1)

Then, the Friedmann equation can be rewritten:

dx

dt
= H0

�
Ωm/x + Ωr/x2 + ΩXx2+3(1+w) + ΩK

�1/2
(3.6.2)

3.6.1. The age of the Universe
From the expression above, computing the age of the Universe is straightforward:

t =
ˆ t

0
dt′ = 1

H0

ˆ 1

0

dx

(Ωm/x + Ωr/x2 + ΩXx2+3(1+w) + ΩK)1/2 (3.6.3)
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Exercice: what is the age of a flat, matter dominated Universe Ωm = 1, Ωr ≪
1, ΩX = 0, H0 = 70km/s/Mpc ? Compare it with the age of our Universe.

3.6.2. Lookback time
We have defined the lookback time in §2.6 and given already a general expression
for it in equation 2.7.2. Pluggin in the Friedmann equation, we get:

t0 − t1 =
ˆ t0

t1

dt′ =
ˆ 1

a1/a0=1/1+z

dx

(Ωm/x + Ωr/x2 + ΩXx2+3(1+w) + ΩK)1/2 (3.6.4)

Exercise: For a flat, matter-dominated Universe, with H0 = 70km/s/Mpc, what
is the lookback time between z = 3 and now ? Compare it with the age of the
same Universe.

3.6.3. Integrating the Friedmann equation
In most cases, the Friedmann equation cannot be integrated analytically – however,
it is straightforward to solve numerically, for example, in a python notebook.
However, in some cases (that do not correspond to our Universe, unfortunately),
simple analytical solutions can be derived.

Empty Universe (Milne)

t = 1
H0

ˆ a/a0

0

dx

Ω1/2
K

= 1
H0

a

a0
⇒ a

a0
= H0t (3.6.5)

The age of the Milne Universe is exactly the Hubble time, 1/H0.

Radiation-dominated Universe

i.e. Ωr ≫ Ωi, ΩK ≪ 1.

t = 1
H0

ˆ a/a0

0

xdx√
Ωr

= 1
2H0

√
Ωr

�
a

a0

�2
⇒ a

a0
= (2H0

q
Ωrt)1/2 (3.6.6)

The age of a radiation dominated Universe is 1/2H0
√

Ωr
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Matter-dominated Universe

i.e. Ωm ≫ Ωi, ΩK ≪ 1.

t = 1
H0

ˆ a/a0

aeq

x1/2dx√
Ωm

= 2
3H0

√
Ωm

�
a

a0

�3/2
⇒ a

a0
≈

�3
2H0

q
Ωmt

�2/3
(3.6.7)

Age ≈ 2/3H0
√

Ωm

Λ-dominated Universe

t =
ˆ t

t⋆

dt = 1
H0

ˆ 1

a⋆/a0

dx√
ΩΛx

= 1
H0

1√
ΩΛ

log
�

a

a⋆

�
⇒ a

a⋆

= eH0
√

ΩΛ(t−t⋆) (3.6.8)

3.7. The evolution of Ω with time
We have not examined yet the evolution of curvature as a function of time (or
redshift).

ΩK = 1 − Ω = − c2K

H2a2 (3.7.1)

Substituting c2K as we have done before, we obtain:

ΩK(z)
 

H0(1 + z)
H(z)

!2

ΩK (3.7.2)

Substituting H(z) from 3.4.7, we get:

ΩK(z) = ΩK

Ωm(1 + z) + Ωr(1 + z)2 + ΩX(1 + z)1+3w + ΩK

(3.7.3)

We see that, if we let aside the models with only vacuum energy (or say a fluid
with w < −1/3), in all other models ΩK(z) becomes very close to 1 at very
high redshifts. This fine tuning problem is one of the motivation for inflationary
mechanisms in the early Universe.
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