
6. Thermal history of the Universe

Cosmic expansion reduces particle momentum by a factor ∝ a−1 and particle density
by another a−3. In early times, the Universe was therefore a hot dense state, in which
particles could exchange energy and momentum quite efficiently, in other words, some
kind of hot temperature plasma in thermal equilibrium (or close to some kind of thermal
equilibrium).

CMB is probably the most direct evidence for this. We have seen that the Universe is
filled with a gas of microwave photons following a blackbody spectrum:

Iν = 8πν3

exp(ν/T0) − 1 (6.0.1)

with T0 = 2.726K. The CMB photons are not in thermal equilibrium with anything:
thermal equilibrium implies frequent energy-momentum exchanges via particle collisions,
while the immense majority of CMB photons have never interacted since their emission.
However, this absence of interactions has preserved the original shape of the CMB spec-
trum, which has been only affected by redshift. A photon detected at frequency ν was
originally emitted with frequency ν(1 + z). That is, the original spectrum was:

Iν ∝ 8πν3

exp(ν/((1 + z)T0)) − 1 (6.0.2)

that is, still a blackbody shape, with temperature (1 + z)T0. This suggests that the
CMB photons were is thermal equilibrium when they were emitted, and more generally,
that the hot primordial plasma was in thermal equilibrium.

In this chapter, we discuss the properties of this early primordial plasma.

6.1. The Universe at z ∼ 10000
Let’s go back well beyond the redshift of the last scattering surface, and consider the
Universe at, say, z1 ∼ 10, 000. What can we say about it ?

First, we know that it is radiation dominated. Indeed, we have seen in homework that
the redshift of matter-radiation equality is: 1 + zeq = Ωm/Ωr ≈ 3450, quite some time
after z = 100001. Being radiation dominated, the Universe expands like a ∝ t1/2.

1Exercise: how much time ?
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Expansion rate The value of the Hubble parameter at z1 can be derived from the
Friedmann equation:

H(z) = H0
�
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩX(1 + z)3(1+z)

�1/2
(6.1.1)

Let’s take the canonical values Ωm = 0.3, ΩX = 0.7 and w = −1. For the radiation
density, we have seen in class that Ωγ = 10−5 (from the CMB temperature). To this we
need to add the contribution of neutrinos (see later in this chapter), which gives a total
of ≈ 910−5 for the radiation density. This gives

H(z1) = 1.1 106 × H0 (6.1.2)

The Universe was expanding much faster than today !

Photons Let’s focus now on the properties of the photons. We know that Tγ ∝ a−1,
so:

Tγ(z1) ≈ 2.726 104 (6.1.3)
. The mean energy of the CMB photons is:

2.7kT0(z1) = 2.7kT0(1 + z1) ≈ 6.34eV (6.1.4)

to be compared with the present value of 6.3410−4eV . Finally, the photon density is
(1 + z1)3 ≈ 1012 the photon density today,i.e.:

nγ ≈ 4.11 1020 γ/m3 (6.1.5)

Baryons The baryon density at z1 can be derived in a similar way. Remember that the
baryon density today is Ωb ≈ 0.048. With a critical density of 5.49protons/m−3, this
gives about nb ≈ 0.263baryons/m−3 and

nb ≈ 0.263 1012baryons/m−3 (6.1.6)

Mean free path of photons Finally, one may wonder about the mean free path of
photons. Photons interact preferentially with electrons via Thomson scattering, and a
good approximation of the photon mean free path is given by:

1
σT nec

(6.1.7)

where σT is the Thomson scattering cross section (6.6529 10−29m2), c, the speed of
light (photon velocity). For the electron density, let’s consider that since the Universe
is neutral, there is one electron for every proton and np ≈ 0.2m−3. This gives

1
σT nec

≈ 7.9 1012yr � tH (6.1.8)
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today and
1

σT ne(1 + z1)3c
≈ 7.9yr � tH (6.1.9)

back then.

To summarize: the Universe at z ≈ 10, 000 was much hotter and denser. The photon
number density was significantly higher than the density of baryons and electrons, as
it is today, but the energy densities of photons and baryons were comparable. Finally,
interactions between photons and charged particles were much more frequent (many per
Hubble time), so, it make plenty of sense to consider the Universe as a fluid in thermal
equilibrium. In the next section, we introduce the tools of equilibrium thermodynamics.

6.2. Equilibrium thermodynamics
We model the Universe fluids as a gas of weakly interacting particles. We use the
formalism of statistical physics and describe the gas by the positions and momenta of
all its particles. To keep things practical, we use distribution functions defined on the
{�x, �p} phase-space.

Quantum mechanics tells us that the density of states in the phase space is bounded.
Let’s consider a box of edge-size L, with periodic conditions and solve the Schrodinger
equation, we obtain that the possible momentum values are:

�p = h

L
(nx�x + ny�y + nz�z) , ni = 0, ±1, ±2, . . . (6.2.1)

where �x, �y and �z are the unit vectors and h is the Planck constant. As a consequence,
the state density in the momentum space is:

L3

h3 = V

h3 (6.2.2)

and the state density in the phase space is:

1
h3 = 1

(2π)3�3 (6.2.3)

or just 1/(2π)3 in a unit system where � = 1. As we can see, the state density is
independent of the volume. It stays the same for arbitrarily large system. If the particles
have g internal degrees of freedom (e.g. spin), the density of states is:

g

(2π)3�3 (6.2.4)

The properties (number density, energy density, pressure) of a given gas depend on the
distribution function f(�x, �p, t), which describes how the particles are distributed in the
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44 Chapter 6. Thermal history of the Universe

phase space. Because of homogeneity f cannot vary as a function of �x. Because of
isotropy, f can only depend on the norm of the momentum p ≡ |�p|. The number of
particles of momentum p is given by:

g

(2π)3 f(p, t) (6.2.5)

Knowing the distribution function, we can compute the gas macroscopic properties, in
particular, the number density:

n = g

(2π)3

ˆ

d3pf(p) (6.2.6)

For the energy density, we just have to sum the particle energies weighted by 6.2.5.

ρ = g

(2π)3

ˆ

d3pf(p)
�

p2 + m2 (6.2.7)

Here, we have assumed that we can ignore the interaction energies between particles (i.e.
we are dealing with a gas of weakly interacting particles). In that case, the energy is
given by: E(p) =

�
p2 + m2 and the available states are indeed the free particle states

described above.

We can similarly obtain the pressure of the gas:

P = g

(2π)3

ˆ

d3pf(p) p2

3E
(6.2.8)

One may wonder where this p2/3E comes from. This is explained in the box below.

Why p2/3E ?

Let’s consider a surface element δA. We note n̂ its unit vector. The particles of
velocity v that hit δA between t and t + δt are located in a spherical shell around
δ, between radii vt and v(t + δt).

dN = g

(2π)3 f(E)R2v dt dΩ (6.2.9)

Not all of these particles will the surface. Only those whose velocity is aimed at
δA, i.e. those whose velocity vector is in the solid angle subtended by δA. So:

dNhit = dN × |v̂ · n̂|
4πR2

= g

(2π)3 f(E) v̂ · n̂

4π
dA dt dΩ

(6.2.10)
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Let’s assume that the interactions are elastic and that each particle transfers
momentum 2|�p�n| to the surface. The resulting pressure is:

dP (v) =
ˆ 2|�p · �n|

dA dt
dNA

= g

(2π)3 f(E) p2

2πE

ˆ

cos2 θ sin θdθdφ

= g

(2π)3 f(E) p2

3E

(6.2.11)

6.2.1. Kinetic equilibrium
When particles can exchange energy and momentum often, the gas reaches a state of
maximum entropy, called kinetic equilibrium. It is a well known result of statistical
physics that the maximum entropy distribution functions for fermion and bosons are
given by the Fermi-Dirac and Bose-Einstein distributions respectively:

f(p) = 1
exp

�
E(p)−µ

T

�
± 1

(6.2.12)

(+) being for Fermi-Dirac and (-) for Bose-Einstein. These functions can be derived by
evaluating the entropy of the gaz (S = ln Γ) as a function of energy, and maximizing it,
for a given total energy and a given total number of particles.

At low temperatures, we recover that the well-known Maxwell-Boltzmann distribution:

f(p) = exp
�

−E(p) − µ

T

�
(6.2.13)

is valid for both Fermions and Bosons.

The Fermi-Dirac and Bose-Einstein distribution functions depend on two parameters:
the temperature of the gas, T , and the chemical potential of the species µ, which char-
acterizes the change in entropy or energy as the number of particles varies (see details
in box below).

Chemical potential

The energy variations of a system can be expressed as a function of its entropy,
volume and temperature as:

dE = TdS − PdV + µdN (6.2.14)
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46 Chapter 6. Thermal history of the Universe

or alternatively, the entropy variations of the same system may be written as:

dS = dE

T
+ P

T
dV − µ

T
dN (6.2.15)

Let’s consider two systems S1 and S2 at temperatures T1 and T2 brought into
contact. If both systems are isolated (1) the total energy of (S1 + S2) is constant;
dE = dE1 + dE2 = 0 ⇒ dE1 = −dE2 (2) the entropy of (S1 + S2) reaches a
maximum: dS = dS1 + dS2 = 0 ⇒ dE1/T1 + dE2/T2 = 0, which gives T1 = T2 at
equilibrium.
Now let’s consider that S1 and S2 can exchange particles (keeping the total number
of particles constant). We have (1) dN = dN1 + dN2 = 0 ⇒ dN1 = −dN2 and (2)
the entropy of (S1 + S2) reaches a maximum, which gives: − µ1

T dN1 − µ2
T dN2 = 0

hence µ1 = µ2. At equilibrium, both chemical potentials are equal.
Now, let’s consider the case of a chemical reaction: 1 + 2 � 3 + 4, i.e. the
case of four systems S1, S2, S3 and S4 brought into contact. Following the same
reasoning, we can show that (1) they reach a single equilibrium temperature T
and (2) at equilibrium, we have µ1 + µ2 = µ3 + µ4.
More generally, when we have a conserved charge Q = �

i qiNi, we get a constraint:
dQ = 0 = �

i qidNi, along with the maximum entropy constraint: �
i µidNi = 0.

This means that there is a constant µ such that µi = µqi.

If the gas contains several species in interaction, each species i is described by its own
distribution function, its own chemical potential µi, and possibly (if decoupled) its own
temperature Ti. From this, we can derive each species’ number density, energy density
and temperature.

If all species are in kinetic equilibrium and share the same temperature: Ti = T , the
system has reach thermal equilibrium.

6.2.2. Chemical equilibrium
We have seen in the box above, that if several species interact via a reaction, for example:

ν1X1 + ν2X2 + . . . � ν �
1Y1 + ν �

2Y2 + . . . (6.2.16)

and reach chemical equilibrium (i.e. maximum entropy state), the chemical potentials
satisfy: �

i

νiµi =
�

j

ν �
jµj (6.2.17)

plus any conservation equation imposed by a conserved charge (number of particles,
electric charge, baryon number etc.)

For photons, we have no conserved charge. Even the number of photons is not conserved.
For example, we have double Compton scattering e− +γ � e− +γ +γ or Bremstrahlung
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6.3. Density and pressure of fermions and bosons 47

e− + p → e− + p + γ. Hence:
µγ = 0 (6.2.18)

For particles and anti-particles: they are of opposite charges, hence, at equilibrium:

µX = −µX̄ (6.2.19)

(we can also use the reaction X + X̄ � γ + γ to reach the same conclusion).

To summarize A system species has reached kinetic equilibrium if it has reached a
maximum entropy state described by either a Fermi-Dirac or a Bose-Einstein distribution
function. A system composed of several species interacting via one or several chemical
reactions has reached chemical equilibrium if it has reached a maximum entropy state,
where the sum of the chemical potentials of the reactants is equal to the sum of the
chemical potentials of the products. A system has achived thermal equilibrium if it has
reach chemical equilibrium and if all species share the same temperature.

6.3. Density and pressure of fermions and bosons
We now have everything we need to compute the number density, energy density and
pressure of the constituents of the universe. As shown in the box below, the chemical
potentials can be safely neglected, and equations 6.2.6, 6.2.7 and 6.2.8 can be rewritten:

n = g

2π2

ˆ

dp
p2

exp
��

p2 + m2/T
�

± 1

ρ = g

2π2

ˆ

dp
p2�

p2 + m2

exp
��

p2 + m2/T
�

± 1

P = g

2π2
1
3

ˆ

dp
p4

�
p2 + m2

�
exp

��
p2 + m2/T

�
± 1

�

(6.3.1)

In the general case, the integrals above must be computed numerically. There are two
interesting limits however, which allow to understand the physical processes under way:
the case where the particles are relativistic, i.e. T � m and the opposite case of non-
relativistic species: T � m.

Before we proceed, let’s define: x ≡ m/T and ξ ≡ p/T , we can then rewrite n and ρ
above as:

n = g

2π2 T 3I±(x) with I±(x) =
ˆ ∞

0
dξ

ξ2

exp
��

ξ2 + x2
�

± 1

ρ = g

2π2 T 4J±(x) with J±(x) =
ˆ ∞

0
dξ

ξ2�
ξ2 + x2

exp
��

ξ2 + x2
�

± 1

(6.3.2)
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48 Chapter 6. Thermal history of the Universe

6.3.1. Relativistic limit
In the relativistic limit, we can neglect x and the integrals I±(0) and J±(0) can be
computed exactly, as long as we are familiar with the Γ and ζ functions (see box below).
We find:

Bosons Fermions

n =ζ(3)
π2 gT 3 3

4
ζ(3)
π2 gT 3

ρ =π2

30gT 4 7
8

π2

30gT 4

(6.3.3)

For the pressure, we have p2/E ∼ p for relativistic particles. We find that:

P = 1
3

g

2π2 T 4
ˆ

dξ
ξ3

exp ξ ± 1 = 1
3

g

2π2 T 4J±(0) = ρ

3 (6.3.4)

We recover the equation of state of radiation (we used it when computing the expansion
rate for a radiation dominated Universe).

Another known fact we can recover from the integrals above is the CMB photon density:
Exercise Using T0 = 2.726K, compute the photon number density (today) and the
photon energy density (today). Show that:

nγ = 411cm−3

ργ = 4.6 × 1034 gcm−3

and recover the CMB photon density today (in units of the critical density):

Ωγ = 2.5h−210−5

To get the correct numerical answer, you will need to do a little bit of dimensional
analysis. Where did we drop the physical constant(s) you had to retrieve ?

Computing I±(0) and J±(0)

To compute I−(0) it is useful to know the definition of the Riemann-zeta function:

ζ(s) =
∞�

i=1

1
ns

= 1
Γ(s)

ˆ ∞

0

xs

ex − 1dx where Γ(s) =
ˆ ∞

0
xs−1e−xdx

For bosons, we get immediately:

I−(0) = 2ζ(3) ≈
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For fermions, we have:

I+(0) =
ˆ ∞

0
ξ2

� 1
eξ − 1 − 2

e2ξ − 1

�
dξ

= I−(0) − 2
ˆ ∞

0

ξ2

e2ξ − 1dξ

= 3
4I−(0)

(6.3.5)

J±(0) can also be expressed as a function of ζ. For bosons, we obtain immediately:

J−(0) = Γ(4)� �� �
3!

ζ(4)����
π4/90

= π4

15

For fermion, we use the same trick as above, and we get:

J+(0) = 7
8J−(0)

6.3.2. Non relativistic limit

In the non-relativistic limit, the energy of the particles is equal to their rest-mass: m �
T , i.e. x � 1. The I and J integrals defined above are the same for fermions and bosons
and we find:

n ≈ g

�
mT

2π

�3/2
exp

�
−m

T

�

ρ ≈ nm

P = nT � ρ = mn

(6.3.6)

When the temperature drops below the particle rest-mass, the particle number density
drops exponentially: massive particles and their anti-particles anihilate while the photon
bath energy is no longer sufficient to balance anihilations by particle-anti-particle pair
production. The energy density and pressure, are (at first order) proportional to n
and drop accordingly. Non relativistic species therefore behave like a pressureless gas, of
energy density its mass density. This is the description of non-relativistic matter we have
used to compute the Universe expansion in the so-called “matter-dominated” regime.
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Computing the number density in the non-relativistic regine

In the non-relativitic regime, only the particle density is somewhat tricky to com-
pute. With the same definitions as above: x ≡ m/T , ξ ≡ p/T and x � 1, the the
integrals I− and I+ reduce to one single expression:

I± =
ˆ ∞

0

ξ2dξ

exp(
�

(x2 + ξ2))
(6.3.7)

ξ � x and we can develop: (x2 + ξ2)1/2 ≈ x(1 + 1
2

ξ2

x2 ), and we can approximate
the integral above with:

I± ≈ e−x

ˆ ∞

0
ξ2e− ξ2

2x dξ

≈ e−x(2x)3/2 1
2 Γ

�3
2

�

� �� �√
π/2

(6.3.8)

6.4. Thermal history of the early Universe
We now have (almost) everything we need to discuss the evolution of the primordial
plasma. When temperature is high enough, the primordial plasma contains all the
particles of the standard model, in relativistic form (plus all the particles that haven’t
been discovered yet, for example, hypothetical particles that constitute the Cold Dark
Matter).

In the early Universe, all the particle species are in thermal (kinetic and chemical equi-
librium, same temperature T ). As the Universe expands, the temperature decreases
(T ∝ a−1). One after the other, the various massive species become non relativistic,
anihilate, and their energy density becomes subdominant compared to the relativistic
species.

If the Universe was is perfect thermal equilibrium, and if this equilibrium had persisted
until today, the observed abundances of massive particles would be much lower than
what they are, since every massive species is exponentially suppressed when it becomes
non relativistic. In fact, thermal and chemical equilibrium need frequent collision (and
/ or reaction) rates to be maintained. As the Universe expands, particles dilute making
it more difficult to maintain the reaction rates. A good rule of thumb is that we need
several reactions per Hubble time to maintain thermal equilibrium. So, if

Γ � H (6.4.1)

the equilibrium is maintained. When the reaction rate drops below H, thermal equilib-
rium is no longer maintained, particle densities freeze out to their pre-decoupling values.
Freeze out is an essential mechanism to explain today’s particle abundances.
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6.4.1. Effective Number of relativistic species
We start with a primordial plasma in thermal and chemical equilibrium. All species
share the same temperature which we note T . T is in particular the temperature of the
photon bath.

The expansion rate is a direct function of the total energy density:

H2 = 8πG

3 ρ(T ) (6.4.2)

where ρ(T ) is the sum of the densities of each species present in the primordial fluid.

ρ(T ) =
�

i

ρi(T ) (6.4.3)

we have seen in the previous section that ρi ∝ T 4 while the particle stays relativistic,
and drops to almost nothing when the temperature drops below the particle mass. More
precisely, we can write

ρ(T ) = π2

30g�(T )T 4 (6.4.4)

where g�(T ) is the effective number of relativistic degrees of freedom of the plasma at
temperature T :

g�(T ) =
�

i=b

gi + 7
8

�

i=f

gi (6.4.5)

When the temperature drops below the mass of one of the species, mi, it becomes
relativistic and drops from the sum above. In the intervals between the particle masses,
g�(T ) remains nearly constant. Since radiation dominates, we have p = ρ/3 and therefore
ρ ∝ a−4. Since ρ ∝ T 4, we have the usual

T ∝ a−1 (6.4.6)

in the primordial plasma.

6.4.2. Expansion of the primordial plasma
The expansion law obeys the first equation of Friedmann, which we know quite well now:

H2 = 8πG

3 ρ = 8πG

3
π2

30g�(T )T 4 (6.4.7)

and therefore:

H =

�
8π3G

90 g
1/2
� (T )T 2 (6.4.8)

So, H ∝ T 2 modulo the variations of the effective number of degrees of freedom in the
primordial plasma. Keep this is mind, it will be useful when comparing the expansion
rate with the various reaction rates between the various species.
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Table 6.1.: Particles of the standard model.
Type mass spin g

quarks t, t̄ 173 GeV 1
2 2 · 2 · 3 = 12

b, b̄ 4 GeV
c, c̄ 1 GeV
s, s̄ 100 MeV
d, d̄ 5 MeV
u, ū 2 MeV

gluons gi 0 1 8 · 2 = 16
leptons τ± 1777 MeV 1

2 2 · 2 = 4
µ± 106 MeV
e± 511 keV

ντ , ν̄τ < 0.6eV 1
2 2 · 1 = 2

νµ, ν̄µ < 0.6eV
νe, ν̄e < 0.6eV

gauge bosons W + 80 GeV 1 3
W − 80 GeV 1 3
Z0 91 GeV 1 3
γ 0 1 2

Higgs boson H 125 GeV 0 1

Furthermore, since the Universe is radiation dominated, we have:

H = 1
2t

(a ∝ t1/2) (6.4.9)

which gives

T ≈ [1010K]
�

t

1 sec

�−1/2
(6.4.10)

Or equivalently, we can derive the evolution of the typical particle energy with time.

E ≈ [3 MeV]
�

t

1 sec

�−1/2
(6.4.11)

So, when the Universe was 1 second old, the typical particle energy was of the order of
1 MeV.

6.4.3. Evolution of the primordial plasma
The last missing piece, is the evolution of g�, which is just telling the evolution of the
primordial plasma as it cools down with expansion. Let’s start around T ≤ 100GeV.
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All standard model particles are relativistic (see table 6.1). When all particles are
relativistic, the total number of degrees of freedom is:

gf = 6 × 12� �� �
quarks

+ 3 × 4� �� �
�±

+ 3 × 2� �� �
ν�s

= 90 (6.4.12)

for fermions, and
gb = 8 × 2� �� �

g�
is

+ 3 × 3� �� �
W,Z

+ 2����
γ

+ 1����
H

= 28 (6.4.13)

for bosons, which gives
g� = gb + 7

8gf = 106.75 (6.4.14)

To see what will happen next, we just need a look at the particle masses listed in table
6.1. The top quark anihilates first, reducing the number of degrees of freedom to:

g�(T < mtop) = 106.75 − 7
8 × 12 = 96.25 (6.4.15)

then, we have the Higgs, follows by the electroweak bosons W ± and Z0: reducing g� to
86.25. Then b and c anihilate, at which point g� has been reduced to 61.75.

The next event is the QCD phase transision, which occurs at T ∼ 150MeV . The quarks
combine into baryons (protons, neutrons and mesons), all of them but the pions being
relativistic. At this stage, the only relativistic species left are (1) the photons (2) in the
lepton family, the neutrinos, electrons and muons and (3) for the baryons the pions of
spin 0, hence: gπ = 3 · 1 = 3. So:

g� = 2����
γ

+ 3����
π

+7
8 × (4 + 4� �� �

e±,µ±

+ 6����
ν�s

) = 17.25 (6.4.16)

Then, the pions and the muons anihilate, leaving us with

g� = 2 + 7
8 × (4 + 6) = 10.75 (6.4.17)

The next two significant events are (1) the neutrino decoupling around 1 MeV and (2)
the anihilation of the electrons and positrons (me = 511keV). This is the subject of the
next section.

6.5. Neutrino decoupling and electron-positron anihilations
6.5.1. Neutrino decoupling
Neutrino decoupling is our first experience of freeze-out. Neutrinos interact only through
the weak interaction. Around ∼ 1 MeV, they are still thermalized through interactions
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Figure 6.1.: The evolution of the effective number of species as a function of T (taken
from Baumann).

such as:

νe + p � p + e−

νe + ν̄e � e+ + p−

e− + νe � e+ + νe

(6.5.1)

However, at these energies, the weak interaction cross section is σw ∼ G2
F T 2, hence,

the interaction rate Γ = neσwc ∝ G2
F T 5 drops much more rapidly than the Hubble

parameter (∝ T 2). Around 1 MeV, Γ ∼ H and interactions between neutrinos and other
SM particles becomes highly unlikely. Neutrinos decouple and move free along geodesics.

At this stage, neutrinos are still relativistic (mν � 1MeV ). Even though they do not
interact with other particles anymore, they preserve to an excellent approximation their
Fermi-Dirac distribution function (see box) with a temperature affected only by redshift.
Hence, at this stage:

Tν = Tγ ∝ a−1 (6.5.2)

The spectrum of non-interacting, decoupled species

For ultra-relativistic species, we have p ∼ E. The number of particles at t1 in
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phase space volume d3p1dV1 is:

dN = g

(2π)3
d3p1dV1

exp((E(p1) − µ1)/T1) ± 1 (6.5.3)

At t0, a while later, the same particles are in phase space volume d3p0dV0. The
momenta scale like a−1 and the volume scales like a3. We can therefore write:

dN = g

(2π)3
d3p1dV1

exp((p1 − µ1)/T1) ± 1

= g

(2π)3

d3p0
�

a0
a1

�3
dV0

�
a1
a0

�3

exp((p0
�

a1
a0

�
− µ1)/T1) ± 1

= g

(2π)3
d3p0dV0

exp((p0 − µ0)/T0) ± 1

(6.5.4)

with µ0 ≡ a1
a0

µ1 and T0 ≡ a1
a0

T1.

6.5.2. e+ − e− anihilation

Shortly after neutrino decoupling around 1 MeV, electrons and positrons anihilate (511
keV). Naively, one could say that g�(T ) then becomes:

2 + 7
8 × 6 = 7.25

but Nature is subtler. Indeed, the electron-positron anihilation produces enough energy
and entropy to heat the photon bath, and change the photon temperature. Neutrinos
are unaffected and their temperature still scales like a−1. Therefore, after e+ − e−

anihilation, we have Tν < Tγ .

We are therefore in a new situation where we have several relativistic species with differ-
ent temperatures. To account for this, we can modify equation 6.4.5, by allowing each
species to have its own temperature:

g�(T ) =
�

bosons
gi

�
Ti

T

�4
+ 7

8
�

fermions
gi

�
Ti

T

�4
(6.5.5)

To go further, we need to determine Tν , or more exactly, to relate Tν and Tγ (we know
Tγ pretty well). The simplest way to do this is to use entropy conservation.
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6.6. Conservation of entropy
The entropy of the Universe can only increase or stay constant. We know that, at
equilibrium, entropy is conserved (see box). The primordial plasma is not exactly at
equilibrium2: expansion makes it only a local equilibrium, we’ll see many examples of
out-of-equilibrium processes in what follows. However, since entropy is at first order
proportional to the number of particles, and since photons are by far the most abundant
species in the Universe, we can safely assume that entropy is conserved, and that, to a
very high precision, cosmic expansion is an adiabatic process.

How to compute the total entropy of the Universe ? We can start with:

E = TS − PV +
�

i

µiNi (6.6.1)

which gives:
S = E

T
+ P

T
V −

�

i

µi

T
Ni (6.6.2)

neglecting the chemical potentials:

S ≈ E

T
+ P

T
V (6.6.3)

It is useful to consider the entropy density instead:

s ≡ S

V
≈ ρ + P

T
(6.6.4)

For relativistic species, plugging in the expressions for density and pressure (6.3.3, 6.3.4),
we find:

s = 2π2

45 gT 3 for bosons

s = 7
8

2π2

45 gT 3 for fermions
(6.6.5)

For a collection of species (fermions and bosons), we have:

s = 2π2

45 g�S(T )T 3 (6.6.6)

with
g�S(T ) =

�

bosons
gb

�
Tb

T

�3
+ 7

8
�

fermions
gf

�
Tf

T

�3
(6.6.7)

If the entropy S is conserved, then:

dS = 0 ⇒ d(sa3) = 0 (6.6.8)

which gives:
g�S(T )T 3a3 = constant (6.6.9)

2that’s fortunate, otherwise, we would not be here to think about all that
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6.6.1. The temperature of the Cosmic Neutrino Background
Let’s go back to determining the relation between the temperature of the photons and
the temperature of the cosmic neutrino background. During anihilation, the entropy
and energy of the e± is transfered to the photon bath. The entropy being conserved, we
have, before anihilation, taking apart the entropy of the neutrinos (which is conserved):

gγ
�S,before(T ) = 2 + 7

8(4) = 11
2����

e±,γ

(6.6.10)

after anihilation:
gγ

�S,after(T ) = 2 (6.6.11)

Writing down the conservation of entropy, we have:

a3
before gγ

�Sbefore T 3
before = a3

after gγ
�Safter T 3

after (6.6.12)

which gives:

T 3
after� �� �
Tγ

=
gγ

�S,before
gγ

�S,after

�
abefore
aafter

�3
T 3

before
� �� �

Tν

(6.6.13)

and therefore:
Tγ =

�11
4

�1/3
Tν (6.6.14)

So, we find that, after e± anihilation, the temperature of the cosmic neutrino background
is indeed lower than the temperature of the CMB. Today, using TCMB = 2.726K we
find:

Tν ≈ 1.95K (6.6.15)

From this, we can derive the number density of neutrinos nν as function of nγ . Neutrinos
are fermions (hence the 3/4 factor):

nν = 3
4 × 3 × 4

11nγ (6.6.16)

which gives ≈ 112cm−3 per flavor (336 cm−3 total).

For the energy density of the neutrino background, we find:

ρν = 7
8 × 3 ×

� 4
11

�4/3
ργ (6.6.17)

and numerically, we find Ωνh2 ≈ 1.710−5.

In fact, neutrinos have masses, with two important consequences (1) we do not know
whether they are still relativistic today (all species) (2) Ωνh2 is larger than the value
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quoted above. Cosmology with massive neutrinos will be the subject of an upcoming
homework.

Another remark, is that neutrino decoupling overlapped slightly with e± anihilation.
Since neutrinos were still interacting when anihilation occured the neutrino background
was slightly affected by the enormous energy and entropy release from e± anihilation.
In the literature, this is taken into account by introducing an “effective number of neu-
trinos”, Neff ≈ 3.046. Accounting for this, the neutrino number and energy density
are:

nν = 3
4Neff

4
11nγ

ρν = 7
8Neff

4
11nγ

(6.6.18)

And finally, the correct values g� and g�S after e± anihilation are:

g� = 2 + 7
82Neff

� 4
11

�4/3
≈ 3.36

g�S = 2 + 7
82Neff

� 4
11

�
≈ 3.94

(6.6.19)
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