Quantum ElectroDynamic QED

Particle Physics Fabrice Couderc / Eli BenHaim

NPAC 2022

- 1. Introduction to quantum field theory (QFT)
 - 1. Introduction
 - 2. Scalar fields
 - 3. Dirac fields
 - 4. Electromagnetic field
- 2. Quantum electrodynamics (QED), an interacting field theory
 - 1. Interacting field theory
 - 2. Feynman diagrams
 - 3. ee to mumu scattering
- 3. Renormalisation for experimentalists
 - 1. Preliminary
 - 2. Vertex correction
 - 3. Self-energy correction
 - 4. Vacuum polarisation
 - 5. First test of QED running coupling constant

• Quantum field theory (QFT) developed to solve

Special relativity + quantum mechanics

- Special relativity
 - \checkmark E = m c²
 - \checkmark Can convert particle into energy and vice-versa
- Classical quantum mechanics
 - ✓ $\Psi(x)$ probability of finding a particle at point x
- QM+ SR
 - ✓ Probability for a single particle can not be conserved since the particle can disappear or appear...
 - ✓ Interpretation of $\Psi(x)$???
- QFT : interpret $\Psi(x)$ as an operator

- The interpretation of $\Psi(x)$ with the help of the classical quantum oscillator and the ladder operator
- For a real (*i.e.* neutral) scalar field

$$\left(\partial^{\mu}\partial_{\mu} + m^{2}\right)\phi = \left(\Box + m^{2}\right)\phi = 0$$

$$\phi(x) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_{\vec{p}} e^{-ip.x} + a_{\vec{p}}^{\dagger} e^{+ip.x}\right)$$

$$p^0 = E_p = -\sqrt{m^2 + \vec{p}^2}$$

$$[a_{\overrightarrow{p}}, a_{\overrightarrow{k}}^{\dagger}] = (2\pi)^3 (2E_p) \delta^{(3)}(\overrightarrow{p} - \overrightarrow{k})$$

For Lorentz invariance

Complex scalar fields

- Charged scalar field (φ complex)
 - ✓ both ϕ and ϕ^* obey KG equation

$$\phi(x) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_{\vec{p}} e^{-ip.x} + b_{\vec{p}}^{\dagger} e^{+ip.x} \right)$$
$$\phi^{\dagger}(x) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(b_{\vec{p}} e^{-ip.x} + a_{\vec{p}}^{\dagger} e^{+ip.x} \right)$$

• a, b same commutation rules as for a real scalar field

✓ a⁺ (a) creates (destroys) a particle

✓ b⁺ (b) creates (annihilates) an anti-particle

• The electric charge is conserved (not the number of particles)

$$Q = \int \frac{d^3 p}{(2\pi)^3} \left(a^{\dagger}_{\overrightarrow{p}} a_{\overrightarrow{p}} - b^{\dagger}_{\overrightarrow{p}} b_{\overrightarrow{p}} \right)$$

N particles - M anti-particles = (N+M) q e

Fermion fields

• Fermions field are bi-spinor and obey the Dirac equation

$$\begin{split} \psi(x) &= \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2 E_{\vec{p}}}} \left(a_{\vec{p}}^s u^s(p) e^{-ip.x} + b_{\vec{p}}^{s\dagger} v^s(p) e^{+ip.x} \right) \\ \overline{\psi}(x) &= \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2 E_{\vec{p}}}} \left(b_{\vec{p}}^s \bar{v}^s(p) e^{-ip.x} + a_{\vec{p}}^{s\dagger} \bar{u}^s e^{+ip.x} \right) \end{split}$$

• u, v are the bi-spinor for fermions (anti-fermions)

✓ note: s index corresponds to the spin (up or down)

• To respect causality; a, a⁺ and b, b⁺ must anti-commute

$$\{a_{\overrightarrow{p}}^s, a_{\overrightarrow{k}}^{r\dagger}\} = (2\pi)^3 \ 2 E_p \ \delta^{(3)}(\overrightarrow{p} - \overrightarrow{k}) \ \delta_{rs}$$

• Show this implies: $(a^+)^2 | 0 > = | 0 >$. Fermi statistics !

- Quantization done on the potential vector A^µ
- 4 scalar field obeying independently KG equations
- Quantization to be done respecting gauge invariance...
- A^µ a boson vector with spin 1

✓ massless: only 2 state of helicity

• Euler Lagrange motion equation = Maxwell equations

$$A^{\mu} \equiv (V, \vec{A})$$

 $_{\mu}F^{\mu
u} = 0$ With $F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A^{\mu} \equiv egin{pmatrix} 0 & +E_x & +E_y & +E_z \ -E_x & 0 & -B_z & +B_y \ -E_y & +B_z & 0 & -B_x \ -E_z & -B_y & +B_x & 0 \end{pmatrix}$

And find back Maxwell equations for the interacting field

 ∂_{l}

$$\partial_{\mu}F^{\mu\nu} = j^{\nu} \equiv (j^0 = \rho_q, \vec{j} = \vec{j}_q).$$

7

A word on Lagrangians

• Euler-Lagrange equations from the QED Lagrangian

$$\mathcal{L}_{QED} = \mathcal{L}_{Dirac} + \mathcal{L}_{Maxwell} + \mathcal{L}_{int} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + Qe\overline{\psi}\gamma^{\mu}\psi A_{\mu}$$

• The modified Euler-Lagrange equations when fields interact

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = Q e A_{\mu}\gamma^{\mu}\psi$$
$$\partial_{\mu}F^{\mu\nu} = Q e \overline{\psi}\gamma^{\nu}\psi$$

- Propagator are actually « propagating » a particle from timespace point x to y
- Are derived from the free theory and used for internal lines in a diagram

A first example $e^+e^- \rightarrow \mu^-\mu^+$

 $\mathcal{M} = \bar{v}^{s'}(p')iQ\,e\gamma^{\mu}u^{s}(p) \quad \frac{-i\eta_{\mu\nu}}{(p+p')^2} \quad \bar{u}^{r}(k)iQ\,e\gamma^{\nu}v^{r'}(k') \propto Q^2e^2$

A first example $e^+e^- \rightarrow \mu^-\mu^+$

In the high energy limit, can easily demonstrate

$$\frac{d\sigma}{d\Omega} \propto \alpha^2 \left(1 + \cos^2 \theta \right)$$

Full computation gives (assuming $m_e = 0$). See the QFT course

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4 s} \sqrt{1 - \frac{m_{\mu}^2}{E^2}} \left[\left(1 + \frac{m_{\mu}^2}{E^2} \right) + \left(1 + \frac{m_{\mu}^2}{E^2} \right) \cos^2 \theta \right]$$

$$\sigma_{tot} = \frac{4\pi \alpha^2}{3 s} \sqrt{1 - \frac{m_{\mu}^2}{E^2}} \left(1 + \frac{m_{\mu}^2}{E^2}\right)$$

$$With \ 2E = \sqrt{s}$$
Phase space Matrix element

A first example $e^+e^- \rightarrow \mu^-\mu^+$

R ratio in e⁺e⁻ collisions

$$R_{had} = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Show that in the quark model

$$\sqrt{s} < 2m_c \Rightarrow R_{had} = 2$$

 $\sqrt{s} < 2m_b \Rightarrow R_{had} = 3.3$
 $\sqrt{s} < 2m_t \Rightarrow R_{had} = 3.7$

Very big success of the quark model !!!

Renormalisation for dummies

Corrections to the QED vertex

The QED vertex

$$\Gamma^{\mu}(q = p' - p) = \gamma^{\mu} F_1(q^2) + \frac{\imath \sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2)$$

Tree level: $F_1(q^2) = 1$; $F_2(q^2) = 0$

The second term modifies the electron coupling to a classical B field.

QED vertex correction

At NLO, vertex correction $F_1(q^2) = 1 - \delta F_1(q^2=0) + \delta F_1^{IR}(q^2)$ $F_2(q^2) = 0 + \alpha/2\pi \times [1(q^2 \rightarrow 0)]$

> F_1 diverges at low (IR) and high (UV) q^2 F_2 does not diverge!

 $a_e = (g-2)/2 = F_2(0) = \alpha/(2\pi) = 0.001161$

Electron anomalous g-2

$$a_e^{QED} = C_1\left(\frac{\alpha}{\pi}\right) + C_2\left(\frac{\alpha}{\pi}\right)^2 + C_3\left(\frac{\alpha}{\pi}\right)^3 + C_4\left(\frac{\alpha}{\pi}\right)^4 + C_5\left(\frac{\alpha}{\pi}\right)^5 + \dots$$

C₄ 891 diagrams, C₅ 12672 diagrams (precision 3%) !!!

dominant

small terms (i.e. $\leq 3 \times 10^{-12}$)

$$a_e^{SM} = a_e^{QED} \underbrace{+a_e^{QED}(\mu) + a_e^{QED}(\tau) + a_e^{QED}(\mu, \tau) + a_e(\text{hadr}) + a_e(\text{weak})}_{\text{(weak)}}$$

$$a_e^{SM}(\alpha) = 1\ 159\ 652\ 182.031(15)(15)(720) \times 10^{-12}$$
$$a_e^{exp} = 1\ 159\ 652\ 180.730(280) \times 10^{-12} \qquad 0.25\ ppb$$
$$a_e^{SM}(\alpha) - a_e^{exp} = 1.30(77) \times 10^{-12} \qquad 1.6\ \sigma \text{ agreement}$$

Best measurement: D. Hanneke et al, Phys. Rev. Lett. 100, 120801 (2008)

Muon anomalous g-2

For muon the EW and hadronic contribution are not negligible. Long standing oscillating discrepancy between 2 and 3 σ . Lively field both on theory side (hadron contribution, LxL diagrams) and experimental side (Fermilab starting to take data, J-PARC approved)

Electron self-energy (1)

Electron self energy $S_F(p) = - + \frac{z}{+} + \cdots$

Loop corrections have 2 effects

 $Z_2 = 1 + \delta Z_2(q^2=0) + \delta Z_2(q^2)$

- 1. shift the pole in the propagator, *i.e.* change the electron mass
- 2. change the electron field strength by a factor $\sqrt{Z_2}$

Find the divergence of the loop diagram by dimensional arguments. In fact pole mass only shifted by $+\log(\infty)$ (bare mass is infinite),

> Z₂ also UV divergent, but $\delta Z_2(q^2)$ is not diverging $\delta Z_2(q^2=0)$ diverges but fortunately $\delta Z_2(q^2=0) = \delta F_1(q^2=0)$

$$\bar{u}(p')\,\Gamma^{\mu}(q)\,u(p) \to \left(\sqrt{Z_2}\bar{u}(p')\,\right)\,\Gamma^{\mu}(q)\,\left(\sqrt{Z_2}u(p)\,\right)$$

Electron self-energy (2)

UV divergences cancels out! In fact : true to all orders thanks to gauge properties

$$\begin{split} & Z_2 = 1 + \delta Z_2(q^2 = 0) + \delta Z_2(q^2) \\ & F_1(q^2) = 1 - \delta F_1(q^2 = 0) + \delta F_1^{1R}(q^2) \\ \end{split}$$

$$\bar{u}(p') \Gamma^{\mu}(q) u(p) \to \left(\sqrt{Z_2}\bar{u}(p')\right) \Gamma^{\mu}(q) \left(\sqrt{Z_2}u(p)\right)$$

Vacuum polarisation

Do not change the propagator, but absorb (1-Π) in the electron charge definition

Bare electron charge is infinite but it's absorbed in $\alpha(q^2 = 0)$ Electron charge depends on q^2 of the photon probe! \Rightarrow coupling constants are running in QFT!

Running of QED

OPAL

$$\alpha_{eff}(q^2) = \frac{\alpha}{1 - \frac{\alpha}{3\pi} \sum_f Q_f^2 \log\left(\frac{-q^2}{m_f^2}\right)}$$

 $\begin{aligned} &\alpha(q^2 = 0) = 1/137 \\ &\alpha(q^2 = M_Z{}^2) = 1/128 \end{aligned}$

TOPAZ @ Tristan (1997)

Measurement of the Electromagnetic Coupling at Large Momentum Transfer

PRL78, 424 (1997)

FIG. 2. The measured and theoretical electromagnetic coupling as a function of momentum transfer Q. The solid and dotted lines correspond to positive and negative Q^2 predictions, respectively. As we probe closer to the bare charge, its effective strength increases. $\langle Q_{\gamma_1}Q_{\gamma_2}\rangle^{1/2}$ denotes the square root of the median value for the product of the photon momentum transfers in the antitagged $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ sample. The hadronic data point has been shifted for display.

Complements

Infrared divergences (1)

Well known problem: soft photon emission diverges at low k Regularise with soft photon mass μ

 $d\sigma(p \rightarrow p' + \gamma) = d\sigma_0(p \rightarrow p') \times \alpha / \pi f_{IR}(q^2) \log(-q^2/\mu^2)$

NB: $f_{IR}(q^2 \rightarrow -\infty) = \log(-q^2/m_e^2)$ double logarithm!

Compensates precisely the IR divergence from the vertex! $\delta F_1{}^{IR}(q^2) = -\alpha/(2\pi) \ f_{IR}(q^2) \log(\ -q^2/\mu^2)$

Can not measure elastic scattering independently from soft bremsstrahlung emission

 $d\sigma_{\text{meas}}(p \rightarrow p') \equiv d\sigma(p \rightarrow p') + d\sigma(p \rightarrow p' + \gamma(k < E_{\text{min}}))$

Infrared divergences (2)

$$d\sigma_{\text{meas}}(p \rightarrow p') \equiv d\sigma_0(p \rightarrow p') [1 - \alpha / \pi f_{\text{IR}}(q^2) \log(-q^2 / E_{\text{min}}^2)]$$

where E_{min} is the minimal energy one can measure for a photon μ dependence has disappeared...

Emission of n soft photons adds terms $[\alpha/\pi (-q^2/m_e^2) \log(-q^2/\mu^2)]^n$ Summing the logarithm to get to the Sudakov form factor

 $d\sigma_{\text{meas}}(p \rightarrow p') \equiv d\sigma_0(p \rightarrow p') \times |\exp[-\alpha/\pi f_{\text{IR}}(q^2) \log(-q^2/E_{\text{min}}^2)]|^2$

QED Feynman rules (3)

- For a given process the amplitudes of all diagrams with identical input and output particles should be summed
- Not connected diagram should be removed

$$\left(\begin{array}{c} & & \\ x & & \\ x & & \\ \end{array}\right)$$

• Only amputated diagrams (*i.e.* no loops on an external leg)

