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Introduction

• Quantum field theory (QFT) developed to solve

Special relativity + quantum mechanics 

• Special relativity

✓ E = m c2

✓ Can convert particle into energy and vice-versa


• Classical quantum mechanics

✓ Ψ(x)  probability of finding a particle at point x


• QM+ SR

✓ Probability for a single particle can not be conserved since the 

particle can disappear or appear…

✓ Interpretation of Ψ(x) ??? 


• QFT : interpret Ψ(x) as an operator
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Basics of QFT 

• The interpretation of Ψ(x) with the help of the classical 
quantum oscillator and the ladder operator


• For a real (i.e. neutral) scalar field
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+

For Lorentz invariance



Complex scalar fields

• Charged scalar field (φ complex)

✓  both φ and φ* obey KG equation


• a, b same commutation rules as for a real scalar field

✓ a+ (a) creates (destroys) a particle

✓ b+ (b) creates (annihilates) an anti-particle


• The electric charge is conserved (not the number of particles)
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N particles - M anti-particles = (N+M) q e



Fermion fields

• Fermions field are bi-spinor and obey the Dirac equation


• u, v are the bi-spinor for fermions (anti-fermions) 

✓ note: s index corresponds to the spin (up or down)


• To respect causality; a, a+ and b, b+ must anti-commute


• Show this implies: (a+)2 |0> = |0>. Fermi statistics !

6



Photon field

• Quantization done on the potential vector Aμ


• 4 scalar field obeying independently KG equations

• Quantization to be done respecting gauge invariance…

• Aμ a boson vector with spin 1


✓ massless: only 2 state of helicity


• Euler Lagrange motion equation = Maxwell equations
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Show that

And find back Maxwell 
equations for the 
interacting field 

With



A word on Lagrangians

• Euler-Lagrange equations from the QED Lagrangian
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• The modified Euler-Lagrange equations when fields interact




QED Feynman rules (1) - propagator

• Propagator are actually « propagating » a particle from time-
space point x to y


• Are derived from the free theory and used for internal lines in a 
diagram
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A first example e+e-→μ-μ+
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A first example e+e-→μ-μ+
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In the high energy limit, can easily demonstrate

Full computation gives (assuming me = 0). See the QFT course

Phase space Matrix element

With 2E = √s



A first example e+e-→μ-μ+
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R ratio in e+e- collisions
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Show that in the quark model
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3.3

3.7

Very big success of the quark model !!!



Renormalisation for dummies
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Corrections to the QED vertex 



The QED vertex 
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Tree level: F1(q2) = 1 ; F2(q2) = 0

The second term modifies the electron coupling to a classical B field.

General form for vertex 
-ieγμ ➝ -ieΓμ 



QED vertex correction
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+ ….

At NLO, vertex correction

F1(q2) = 1 - δF1(q2=0) + δF1IR(q2) 

F2(q2) = 0 + α/2π x  [ 1(q2→0) ]

F1 diverges at low (IR) and high (UV) q2

F2 does not diverge!

ae = (g-2)/2 = F2(0) = α/(2π) = 0.001161



Electron anomalous g-2 
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C4 891 diagrams, C5 12672 diagrams (precision 3%) !!!

Best measurement:    D. Hanneke et al, Phys. Rev. Lett. 100, 120801 (2008)

1.6 σ agreement



Muon anomalous g-2 
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For muon the EW and hadronic contribution are not negligible.

Long standing oscillating discrepancy between 2 and 3 σ.

Lively field both on theory side (hadron contribution, LxL diagrams) and experimental 
side (Fermilab starting to take data, J-PARC approved)

BNL: G. W. Bennett et al, Phys Rev D 73, 072003 (2006)



Electron self-energy (1)
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Electron self energy + + …SF(p) = 

Loop corrections have 2 effects

1. shift the pole in the propagator, i.e. change the electron mass 

2. change the electron field strength by a factor √Z2

Find the divergence of the loop diagram by dimensional arguments. 
In fact pole mass only shifted by +log(∞) (bare mass is infinite), 

Z2  = 1 + δZ2(q2=0) + δZ2(q2) 

Z2  also UV divergent, but  

δZ2(q2) is not diverging

δZ2(q2=0)  diverges but fortunately 


δZ2(q2=0) =  δF1(q2 = 0)   



Electron self-energy (2)
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UV divergences cancels out!
In fact : true to all orders thanks to gauge properties

F1(q2) = 1 - δF1(q2=0)  + δF1IR(q2)
Z2  = 1 + δZ2(q2=0) + δZ2(q2) 

δZ2(q2=0) =  δF1(q2 = 0)   



Vacuum polarisation
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μ ν μ ν μ

q2 +iε
-iημν

➝
q2 +iε
-iημν

1 - Π(q2)
1 Dimension regularization 


Π(q2=0) = -2α/(3πε)

UV divergence!   

Do not change the propagator, but absorb (1-Π) in the electron charge definition

α(q2) =  
1 - Π(q2)

1e02

4π

-ie0γμ 

αeff(q2) =  
1 - Π(q2) - Π(0)

1α(q2 = 0)  

Bare electron charge is infinite but it’s absorbed in α(q2 = 0)  

Electron charge depends on q2 of the photon probe! 

⟹ coupling constants are running in QFT!



Running of QED
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α(q2 = 0) = 1/137
α(q2 = MZ2) = 1/128

Screening effect

Eur.Phys.J.C45:1-21,2006

Obtained from Bhabha scattering



TOPAZ @ Tristan (1997)
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Measurement of the Electromagnetic Coupling at Large Momentum Transfer 

PRL78, 424 (1997)



Complements
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Infrared divergences (1)
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Well known problem: soft photon emission diverges at low k

Regularise with soft photon mass μ

dσ(p➝p’+γ)  =  dσ0(p➝p’) x  α/π fIR(q2) log( -q2/μ2)  NB: fIR(q2➝-∞) = log(-q2/me2) 

double logarithm!

Compensates precisely the IR divergence from the vertex!
δF1IR(q2) = -α/(2π) fIR(q2) log( -q2/μ2)

Can not measure elastic scattering independently from soft bremsstrahlung emission

dσmeas(p➝p’) ≡ dσ(p➝p’) +dσ( p➝p’+γ(k<Emin) ) 

Elastic scattering of 
an electron



Infrared divergences (2)
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dσmeas(p➝p’) ≡ dσ0(p➝p’)[ 1 - α/π fIR(q2)  log( -q2/Emin2) ]

where Emin is the minimal energy one can measure for a photon

μ dependence has disappeared…

Emission of n soft photons adds terms [α/π ( -q2/me2)  log( -q2/μ2)]n

Summing the logarithm to get to the Sudakov form factor

dσmeas(p➝p’) ≡ dσ0(p➝p’) x 
                           |exp[ -α/π fIR(q2) log( -q2/Emin2) ] |2



QED Feynman rules (3)

• For a given process the amplitudes of all diagrams with 
identical input and output particles should be summed


• Not connected diagram should be removed


• Only amputated diagrams ( i.e. no loops on an external leg)
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