Deep Inelastic Scattering DIS

Particle Physics Fabrice Couderc / Eli BenHaim

NPAC 2022

- Introduction to Deep Inelastic Scattering
 - ✓ Kinematics
 - ✓ Electron-proton scattering formalism
 - The Hadronic tensor
 - ✓ Elastic scattering
 - Point like particle
 - ◆ ep → ep
- Parton model and Bjorken Scaling invariance
 - ✓ Structure functions (brief reminder)
 - ✓ Spin of quarks
 - ✓ Sea quarks
 - ✓ Evolution of the different models
- Scaling violation and DGLAP equations
 - ✓ Invitation
 - ✓ From low to high Q^2 , why ?
 - ✓ DGLAP
 - ✓ Recap

Scattering kinematics

e-p inelastic scattering

• SLAC experiments 1967-

Kinematic 2D space

1980	1990	2000	2010	
< SLAC				Electrons,3 different detectors, H2,D2,heavy targets
	FNAL E665			Muons, iron toroid, iron target
CERN BCDMS				Muons, iron toroid, H2,D2,C targets
CERN EMC	NMC			Muons, open spectrometer,H2,D2,heavy targets
CERN CDHSW				Neutrinos, iron toroid, iron target
FNAL CCFRW		NuTeV		Neutrinos, iron toroid, iron target
HERA H1 AND ZEUS				Electron-Proton Collider
SL		Polarised targets		Polarised electron beam and targets
		ИСС	OMPASS	> Polarised muon beam and targets
HERA HERMES JLAB HALL A and B				Polarised electron beam and targets
			A and B	> Polarised electron beam and targets

e-p Elastic scattering

 $W = M_p$

e-p inelastic scattering

• Reminder: point-like particle in the parton! (valence quarks)

Bjorken scaling Invariance vs Q²

Bjorken scaling

 vW_2 depends on x

 vW_2 does no depends on Q^2

Quarks: a spin 1/2 particles

Valence and sea quarks

 $\mathbf{R}_2 = \mathbf{F}_2^{en} / \mathbf{F}_2^{ep}$

low x: sea dominates R₂ =1
High x: R₂ = 0.25

demonstrates: $d_v(x) / u_v(x) \sim 1-x$

Bjorken scaling violation

QCD Factorisation theorem

QCD Factorisation theorem

- According to QCD factorisation theorem
 - ✓ It exists a "factorisation scale" for which we can separate
 - long distance effects are included in pdfs
 - hard scatter process (parton a + parton b -> n)
 - Cross section $d\sigma^{\Lambda}$ computable at a renormalisation scale μ_R) $d\sigma$
 - \checkmark The "factorisation scale" is named μ_F is not well defined
 - ✦ Taken as the energy scale of the hard process
 - Varied in the computation of the systematic uncertainties in the cross section prediction

$$\sigma_{2 \to n} = \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \hat{\sigma}_{ab \to n}(\mu_{F}, \mu_{R})$$

 $f_{a/h1}$: pdf of parton a in hadron h1 $f_{b/h2}$: pdf of parton b in hadron h2

From HERA to LHC pdfs ?

LO, $p_T[M] = 0$ $\implies E = (x_1+x_2)\sqrt{s/2}$, $p_z = (x_1-x_2)\sqrt{s/2}$

$$\begin{split} M^2 &= E^2 - p_z^2 = x_1 \, x_2 \, s \\ y &= 0.5 \, x \, ln[\, (E + p_z) / (E - p_z) \,] \\ y &= 0.5 \, x \, ln \, [\, (E^+ \, p_z)^2 \, / \, M^2] \\ y &= 0.5 \, x \, ln \, [\, x_1^2 \, s \, / \, M^2] \end{split}$$

$$\begin{split} M^2 &= x_1 \: x_2 \: s \\ x_1 &= M / \sqrt{s} \: e^y \\ x_2 &= M / \sqrt{s} \: e^{-y} \end{split}$$

10^{9} $x_{1,2} = (M/14 \text{ TeV}) \exp(\pm y)$ Q = M 10^{8} M = 10 TeV 10^{7} 10^{6} M = 1 TeV105 (GeV^2) M = 100 GeV 10^{4} ?? \mathbf{Q}^2 10^{3} .0 y = 10^{2} M = 10 GeVfixed HERA 10^{1} target 10° 10⁻⁴ 10⁻⁵ 10⁻³ 10^{-2} 10-6 10^{-1} 10^{0} 10^{-7}

LHC parton kinematics

DGLAP

Dokshitzer, Gribov, Lipatov, Altarelli, Parisi

Parton density function recap

 $Q^2 = (10 \text{ GeV})^2$

tt production threshold