Electroweak interaction The Glashow-SalamWeinberg model

Particle Physics
Fabrice Couderc / Eli BenHaim

Overview

I. Introduction to $\operatorname{SU}(2) \mathrm{L}$

1. Charged weak current reminder
2. Building a gauge theory of weak interaction
3. Gauge bosons masses
4. Discovery of neutral weak currents
II. Symmetry breaking and the BEH mechanism
5. Scalar field and the abelian symmetry case
III. Electroweak symmetry and GSW model
6. Electroweak symmetry $\mathrm{SU}(2)\llcorner\times \mathrm{U}(1)$
7. Breaking of EWK symmetry and gauge bosons masses
8. Coupling to fermions, hypercharge and weak isospin
9. W, Z boson couplings summary
IV. Experimental tests and exercises
10. Z boson properties
11. Lepton coupling universality
12. Number of neutrino families
13. Left-Right asymmetry at SLC and $\sin ^{2} \theta_{\mathrm{w}}$

Weak neutral current discovery

Gargamelle bubble chamber 1973

$$
\mathbf{V}_{\mu} \mathbf{e}^{-} \rightarrow \mathbf{e}^{-} \mathbf{V}_{\mu}
$$

Weak neutral current discovery

Gargamelle bubble chamber 1973

$$
\mathbf{v}_{\mu} \mathrm{p} \rightarrow \mathrm{X} \mathbf{v}_{\mu}
$$

Z boson discovery

- CERN: UA1 and UA2 located on the SPS (Proton synchroton) ppbar collider with $\sqrt{ } \mathrm{s}=$ 540GeV - 1983

High-energy lepton pair:

$$
m_{\ell \ell}^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}=M_{z}^{2}
$$

Higgs mechanism

- Break symmetry with an $\operatorname{SU}(2)$ doublet

$$
V(\phi)=m^{2}|\phi|^{2}
$$

$$
V(\phi)=-\mu^{2}|\phi|^{2}+\lambda|\phi|^{4}
$$

Developing ϕ around its minimum value $\left|\phi_{\min }\right|=v^{2} / 2$

$$
\begin{aligned}
v & =\sqrt{\frac{\mu^{2}}{\lambda}} \\
& =246 \mathrm{GeV}
\end{aligned}
$$

Hypercharge and weak isospin

Q	T_{3} (left)	\mathbf{Y}	
U	$+2 / 3$	$+1 / 2$	$1 / 6$
nu	$-1 / 3$	$-1 / 2$	$1 / 6$
lep	-1	$-1 / 2$	$-1 / 2$
0		$-1 / 2$	

Can be summarised with
$Q=T_{3}+Y$
$T_{3}\left(U_{L}, D_{L}, r i g h t\right)=+1 / 2,-1 / 2,0$

Z boson property

Green curve includes radiative corrections

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{z}}=91.2 \mathrm{GeV} \\
& \Gamma_{\mathrm{z}}=1.5 \mathrm{GeV}
\end{aligned}
$$

Z/W leptonic decays

- Do these couplings exist $A_{\mu} \bar{\psi} L \gamma_{\mu} \psi_{R}, A_{\mu} \bar{\psi}_{R} \gamma_{\mu} \psi_{L}$?
\checkmark and for Z_{μ} ? W_{μ} ?
- Assuming leptons and quarks are massless,
* Compute $\mathrm{B}(\mathrm{W} \rightarrow \ell v)$ at tree level neglecting phase space
* Compute $\Gamma(\mathrm{Z} \rightarrow \bar{v} v) / \Gamma(\mathrm{Z} \rightarrow \overline{\mathrm{e}} \mathrm{e})$
*From $B(Z \rightarrow \ell)=3.3 \%$, conclude that $B(Z \rightarrow v v) \simeq 20 \%$
* Use it to predict the number of neutrino family from $\Gamma_{\text {inv }}$ measurement

Note: $\sin ^{2} \theta_{\mathrm{w}} \simeq 0.23$

Number of neutrino family

$N_{v}=2.984 \pm 0.008$

Asymmetry $A_{L R}$ and $\sin ^{2} \theta_{w}$

