Collisions and kinematics

Particle Physics
Fabrice Couderc / Eli BenHaim

Overview

1. Special relativity for particle physicists
2. Reminders
3. Rapidity
4. Pseudo-rapidity
5. Cross sections
6. Introduction
7. First example
8. Cross section master formula
9. Two-body phase space
10. Luminosity
11. Resonances
12. Particle total width
13. Total width definition
14. Branching ratio and partial width
15. Master formula

Reminder of special relativity

Properties	Classical relativity	Special relativity
Coordinates	time universal (same in all frames)	$x \equiv x^{\mu}=(t, \vec{x})$ frame dependent
	\vec{x} frame dependent	
Frame change	Galilean group	Poincare group
	space-time translations + rotations	space-time translations
	space rotations	space rotations
	+ Galielan transfo	+ Lorentz boost
Invariant	time is invariant	$d s^{2}=\eta_{\mu \nu} d s^{\mu} d s^{\nu}$
	$d \vec{x}^{2}=\sum_{i}\left(d x^{i}\right)^{2}$	$d s^{2}=c^{2} d t^{2}-d \vec{x}^{2}$
		$d s^{2}=c^{2} d t^{2}\left(1-\vec{\beta}^{2}\right)=\frac{1}{\gamma^{2}} c^{2} d t^{2}$
		$\gamma=\frac{1}{\sqrt{1-\vec{\beta}^{2}}>1}$
length	frame independent	frame dependent
time	frame independent	frame dependent

A few definition

Lorentz boost along \mathbf{z} with velocity $\boldsymbol{\beta}$

$$
\begin{gathered}
Y=\operatorname{arctanh}(\beta) \\
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\cosh Y & 0 & 0 & -\sinh Y \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sinh Y & 0 & 0 & \cosh Y
\end{array}\right)
\end{gathered}
$$

Hyperbolic trgonometry, $\quad \operatorname{arctanh}(x)=\frac{1}{2} \ln \frac{1+x}{1-x}$,
Express the rapidity of a particle of mass m and momentum $|\mathrm{p}|$?

A few definition

Lorentz boost along \mathbf{z} with velocity $\boldsymbol{\beta}$

$$
\begin{gathered}
Y=\operatorname{arctanh}(\beta) \\
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\cosh Y & 0 & 0 & -\sinh Y \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sinh Y & 0 & 0 & \cosh Y
\end{array}\right)
\end{gathered}
$$

Hyperbolic trgonometry, $\quad \operatorname{arctanh}(x)=\frac{1}{2} \ln \frac{1+x}{1-x}$,
Express the rapidity of a particle of mass m and momentum $|\mathrm{p}|$?

Particle physics

$$
y \equiv \operatorname{arctanh}\left(\frac{p_{z}}{E}\right)=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)
$$

Cross section definition

Rutherford's Gold Foil Experiment

The atomic model introduces the concept of cross section

Cross section definition

Consider a beam of particles B smashed on a target of particles A
$\frac{\sigma}{A}=\frac{\text { Number of scattering events }}{N_{A} N_{B}}$

With A the area of the beam(s)

Cross section definition

Assuming the projectile surface has a negligible surface, the probability of interaction is
$P=($ cross section $) /($ total area $)=($ sum of gray area $) / S$

Cross section unit: 1 barn $=10-24 \mathrm{~cm}^{2}=10-28 \mathrm{~m}^{2}$

A first example

Cross section of neutron on Americium 241, showing low energy 1/E dependence

$$
\sigma(n-T) \propto \pi\left(R+\lambda\left(E_{n}\right)^{2}\right)
$$

Cross section and matrix element

A lot is given in the booklet
http://pdg.lbl.gov/2018/reviews/rpp2018-rev-kinematics.pdf

Figure 47.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

$$
\begin{aligned}
& d \sigma=\frac{(2 \pi)^{4}|\mathscr{M}|^{2}}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \\
& \times d \Phi_{n}\left(p_{1}+p_{2} ; p_{3}, \ldots, p_{n+2}\right) .
\end{aligned}
$$

$$
d \Phi_{n}\left(P ; p_{1}, \ldots, p_{n}\right)=\delta^{4}\left(P-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}
$$

Collider luminosity

$$
\begin{aligned}
\mathcal{L}= & R_{\phi} \times \frac{N_{1} N_{2} f n_{\text {bunch }}}{4 \pi \sigma_{x}^{*} \sigma_{y}^{*}} \\
\mathcal{L}= & R_{\phi} \times \frac{N_{1} N_{2} f n_{\text {bunch }}}{4 \sqrt{\epsilon_{x}^{*} \beta_{x}^{*} \epsilon_{y}^{*} \beta_{y}^{*}}} \\
& \text { with } \quad R_{\phi}=\frac{1}{\sqrt{1+\phi^{2}}} \text { and } \phi=\frac{\theta_{c} \sigma_{z}}{2 \sigma_{x}}
\end{aligned}
$$

Resonances and e+e- cross section

LO: usually dominates the σ

Loop correction: Bound state $q \bar{q}$

- Particles stable at the detector level
\checkmark ₹ stable
\checkmark e stable
\checkmark p stable
$\checkmark \mathrm{n}: \mathrm{ct}=2.610^{8} \mathrm{~km}$
$\checkmark \mu^{ \pm}: \mathrm{ct}=658 \mathrm{~m}$
$\checkmark \Pi^{ \pm}: \mathrm{CT}=7.8 \mathrm{~m}$
$\checkmark \mathrm{K}^{ \pm}: \mathrm{ct}=3.7 \mathrm{~m}$
$\checkmark \mathrm{K}_{\mathrm{L}}$: $\mathrm{ct}=15.3 \mathrm{~m}$
- Short-lived particles
$\checkmark \mathrm{Ks}, \wedge \ldots: 10^{-10} \mathrm{~s}, \mathrm{ct}=\mathrm{O}(1 \mathrm{~cm})$
\checkmark D mesons : $\mathrm{ct}=\mathrm{O}(100 \mu \mathrm{~m})$
\checkmark B mesons : $\mathrm{ct}=\mathrm{O}(500 \mu \mathrm{~m})$

Total width

$$
\frac{\mathrm{d} N}{\mathrm{~d} m}=\frac{\Gamma / 2}{\left(m-m_{0}\right)^{2}+\Gamma^{2} / 4}
$$

Partial width and branching fraction

$$
\Gamma_{\text {tot }}=\sum_{i} \Gamma_{i}\left(M_{i} \rightarrow\{f\}_{i}\right) \quad B\left(M \rightarrow\left\{M_{i}\right)=\frac{\Gamma_{i}}{\left.\Gamma_{i}\right)=\frac{1}{2}\left(0^{-}\right)}\right.
$$

$D^{ \pm} \quad I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)$

$$
D^{ \pm} \text {MASS }
$$

The fit includes $D^{ \pm}, D^{0}, D_{s}^{ \pm}, D^{* \pm}, D^{* 0}, D_{s}^{* \pm}, D_{1}(2420)^{0}, D_{2}^{*}(2460)^{0}$,
and $D_{s 1}(2536)^{ \pm}$mass and mass difference measurements.
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\text { EVTS }}$ 1869.65士 0.05 OUR FIT 1869.5 ± 0.4 OUR AVERAGE $1869.53 \pm 0.49 \pm 0.20 \quad 110 \pm 15$ $1870.0 \pm 0.5 \pm 1.0 \quad 317$ 1869.4 ± 0.6

Measurements with an error $>100 \times 10^{-15} \mathrm{~s}$ have been omitted f Listings.

$\operatorname{VALUE}\left(10^{-15} \mathrm{~s}\right)$	EVTS	DOCUMENT ID		TECN	COMME
1040 ± 7 OUR AVERAGE					
$1039.4 \pm 4.3 \pm 7.0$	110k	LINK	02F	FOCS	γ nucle
$1033.6 \pm 22.1{ }_{-12.7}{ }^{9} 9$	3.7k	BONVICINI	99	CLEO	$e^{+} e^{-}$
$1048 \pm 15 \pm 11$	9 k	FRABETTI	94D	E687	$D^{+} \rightarrow$

Γ_{41}	$K_{S}^{0} \pi^{+}$	$(1.47 \pm 0.08) \%$	
Γ_{42}	$K_{L}^{0} \pi^{+}$		$(1.46 \pm 0.05) \%$
Γ_{43}	$K^{-}-2 \pi^{+}$	$[$[a]	$(8.98 \pm 0.28) \%$
Γ_{44}	$\left(K^{-} \pi^{+}\right) S_{S}$-wave π^{+}	$(7.20 \pm 0.25) \%$	
Γ_{45}	$\bar{K}_{0}^{*}(700)^{0} \pi^{+}, \bar{K}_{0}^{*}(700) \rightarrow$		
Γ_{46}	$\bar{K}_{0}^{*}(1430)^{-} \pi^{+}$,	$[b]$	$(1.19 \pm 0.07) \%$

Partial width cont'd

$$
\Gamma_{Z}=\Gamma(Z \rightarrow \mathrm{had})+3 \times \Gamma\left(Z \rightarrow \ell^{+} \ell^{-}\right)+N_{\nu} \times \Gamma(Z \rightarrow \nu \bar{\nu})
$$

Measurement of the number of neutrino flavours at LEP

NB:
this is measured with the hadronic decays of the Z only, i.e. the width in hadronic decay is the total Γ_{z} and not only $\Gamma_{\text {had }}$

Partial widths are not a measurable quantity only the total width is.

Dalitz plot

$$
\begin{aligned}
& d \Gamma=\frac{1}{(2 \pi)^{3}} \frac{1}{8 M} \overline{|\mathscr{M}|^{2}} d E_{1} d E_{3} \\
& =\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \overline{|\mathscr{M}|^{2}} d m_{12}^{2} d m_{23}^{2}
\end{aligned}
$$

Pure phase space

Actual plot

Most of the decay pass through the D* resonance

Complements

Cockcroft Walton experiment

- 1932, first transmutation of a nuclei
- Smash $\mathrm{E}_{\text {kin }}[\mathrm{p}] \approx 800 \mathrm{keV}$ on a Lithium target
- $\mathrm{Li}^{7}+\mathrm{p} \rightarrow \mathrm{a}+\mathrm{a}$
$\checkmark \mathrm{M}\left[\mathrm{Li}^{7}\right]=6535.4 \mathrm{MeV}$
$\checkmark \mathrm{M}[\mathrm{p}]=938.3 \mathrm{MeV}$
$\checkmark \mathrm{M}[\mathrm{a}]=3728.4 \mathrm{MeV}$

Cockcroft Walton experiment

- Compute the total mass of the initial system?
- Kinetic energy of p in the center of mass

- Justify that the center-of-mass frame is approx. the lab frame
- General 2-body decay
$\checkmark \mathrm{M} \rightarrow \mathrm{p} 1+\mathrm{p} 2$
\checkmark Momentum of $|p|$ of $p 1$ and $p 2$ in M restframe
\checkmark Apply that to $\mathrm{M} \rightarrow 2$ alphas
\checkmark Energy of alpha in the center of mass
\checkmark Kinetic energy of each alpha in the lab ?
\checkmark Solve in 2 lines with the conservation of energy in the center-of-mass frame

Cockcroft-Walton generator, Fermilab

Cockcroft Walton experiment

Disintegration of Lithium by Swift Protons
In a previous letter to this journal ${ }^{1}$ we have described a method of producing a steady stream of swift protons of energies up to 600 kilovolts by the application of high potentials, and have described experiments to measure the range of travel of these protons outside the tube. We have employed the same method to examine the effect of the bombard ment of a layer of lithium by a stream of these ions, the lithium being placed inside the tube at 45° to the beam. A mica window of stopping power of 2 cm . of air was sealed on to the side of the tube and the existence of radiation from the lithium was investigated by the scintillation method outside the tube. The thickness of the mica window was much more than sufficient to prevent any scattered protons from escaping into the air even at the highest voltages used.
On applying an accelerating potential of the order of 125 kilovolts, a number of bright scintillations were at once observed, the numbers increasing rapidly with voltage up to the highest voltages used, namely 400 kilovolts. At this point many hundreds of scintillations per minute were observed using a proton current of a few microamperes. No scintillations were observed when the proton stream was cut off or when the lithium was shielded from it by a metal screen. The range of the particles was measured by introducing mica screens in the path of the rays and found to be about eight centimetres in air and not to vary appreciably with voltage.

Nobel 1951

Known as the first experimental proof that mass can be converted into kinetic energy

Also the first actual alchemists!

To throw light on the nature of these particles, experiments were made with a Shimizu expansion chamber, when a number of tracks resembling those of a-particles were observed and of range agreeing closely with that determined by the scintillations. It is estimated that at 250 kilovolts, one particle is produced for approximately 10^{9} protons.

The brightness of the scintillations and the density of the tracks observed in the expansion chamber suggest that the particles are normal a-particles. If this point of view turns out to be correct, it seems not unlikely that the lithium isotope of mass 7 occasionally captures a proton and the resulting nucleus of mass 8 breaks into two α-particles, each of mass four and each with an energy of about eight million electron volts. The evolution of energy on this view is about sixteen million electron volts per disintegration, agreeing approximately with that to be expected from the decrease of atomic mass involved in such a disintegration.

Experiments are in progress to determine the effect on other elements when bombarded by a stream of swift protons and other particles.
J. D. Cockcroft.
E. T. S. Walton.

Cavendish Laboratory, Cambridge, April 16.
${ }^{1}$ Nature, 129, 242, Feb. 13, 1932.
No. 3261, VoL. 129]

LHC parameters

	design	June $\mathbf{2 0 1 2}$
Beam energy	7 TeV	4 TeV
transv. norm. emittance	$3.75 \mu \mathrm{~m}$	$\mathbf{2 . 6 ~ \mu \mathrm { m }}$
beta*	0.55 m	0.6 m
IP beam size	$16.7 \mu \mathrm{~m}$	$19 \mu \mathrm{~m}$
bunch intensity	1.15×10^{11}	$\mathbf{1 . 4 8 \times 1 0 ^ { 1 1 }}$
luminosity / bunch	$3.6 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	$1.1 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\# bunches	2808	1380
bunch spacing	25 ns	50 ns
beam current	0.582 A	0.369 A
rms bunch length	7.55 cm	$\geq 9 \mathrm{~cm}$
crossing angle	$285 \mu \mathrm{rad}$	$290 \mu \mathrm{rad}$
"Piwinski angle"	0.64	≥ 0.69
luminosity	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	$6.8 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

CMS Integrated Luminosity, pp, 2018, $\sqrt{s}=13 \mathrm{TeV}$

- Consider the reaction: $n \rightarrow p e^{-} v_{e}$
- From the maximum energy released in the reaction justify

$$
\checkmark E_{p / e}=m_{p / e}+K_{p / e} \text { and that } K_{p} \ll K_{e}
$$

- Integrate the phase-space over $d^{3} p_{p}$
- Then over $d_{\text {ve }} \delta\left(E_{f}-m_{n}\right)$
- Find

$$
\frac{1}{G_{F}^{2} p_{e} E_{e}} \frac{d \Gamma\left(n \rightarrow \rightarrow p \beta^{-} \bar{\nu}_{e}\right)}{d K_{e}} \propto\left(Q-K_{e}\right)^{2} \times \sqrt{1-\frac{m_{\nu}^{2}}{\left(Q-K_{e}\right)^{2}}}
$$

$$
Q=m_{n}-m_{p}-m_{e}
$$

Kurie ploł

Constraint on neutrino mass

$\mathbf{M v}<\mathbf{2 e V}$

