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Corrections Midterm exam of Particle
Physics (Parts I-II)

Tuesday November 15th 2022

Exercise I
Questions on the lectures

Reply shortly and succinctly to the questions below. The shortest answer that details in a
comprehensive manner all the relevant arguments is the best.

1. What was the motivation of Pauli for postulating the existence of neutrinos in the years
1930? Why are these particles difficult to detect? How and when were discovered the
electron and muon neutrinos?

Under the hypothesis that the final state of the nuclear beta process has two bodies (the recoil
nucleus and the electron1) the momenta of the recoil nucleus and the electron are back-to-
back, and their energies do not have any degree of freedom. They are determined by the
masses of the initial and final particles. Thus, under this hypothesis, the energy spectrum of
electrons should have been a “Dirac” peak. But experimental observations showed that the
electron energy spectrum is a distribution, indicating either that energy is not conserved in
the process (Bohr’s hypothesis) or that there is at least one more final-state neutral particle,
which for some reason is not detected. Pauli postulated the existence of such particle and
named it neutrino (“the little neutral”).
Neutrinos couple to other particles only via the weak interaction, and thus the corresponding
cross sections are very small. Detecting them requires a large number of neutrinos (intense
beams) and very massive detectors, in order to obtain a large-enough interaction probability.
The electron neutrinos were discovered by Reines and Cowan in 1956. They used a massive
detector, near a nuclear plant (naturally producing a big amounts of neutrinos).
Muon neutrinos were discovered in 1962 in the Brookhaven accelerator (not required in the
answer: by Lederman, Schwartz, Jack Steinberger, 1988 Nobel prize, who used a pion beam to
create a muon neutrinos beam, isolated by passing by a shielding wall that let only neutrinos
through, and a massive spark chamber).

1positron in beta plus decays
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2. What is the baryon number and how is it defined? How is the fact that it is conserved by
the strong, electromagnetic and weak interactions related to the allowed coupling (vertexes)
of these interactions? Relate the conservation of the baryon number to the fact that the
proton is a stable particle.

The Baryon number is an additive quantum number (or a charge), which has the values of
+1 for baryons, −1 for anti-baryons (1/3 for quarks and −1/3 for anti-quarks), and is 0
for mesons, leptons and gauge bosons. It was initially introduced to account for the fact that
observed processes always had the same number of baryons (minus anti-baryons) in their
initial and final states.
Its conservation by all interactions is related to the fact that quarks are always produced and
annihilated by pairs (and that the baryon numbers of all the quarks are the same).
The proton is the lightest baryon, and thus it cannot decay to any particle without violating
baryon-number conservation. It is thus a stable particle, at least according to the standard
model.
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Exercice II
The BABAR experiment

The BABAR experiment was an electron-positron collider aimed at studying CP violation. The
collider (PEP-II) properties are given in Tab. 1.

Table 1: Properties of the PEP-II collider (and naming conventions for the exercise)

.
Beam Energy
Electron (oriented along +z⃗ axis and named A) 9 GeV
Positron (oriented along −z⃗ axis and named B) 3.1 GeV

We note throughout the exercise
√
s the value of the total energy in the center of mass. For a

given trivector q⃗, we note qT its norm in the (x⃗, y⃗) plane, and θ the angle between q⃗ and the z⃗
axis. We add a ∗ when these values are expressed in the center of mass.

1. Kinematics of the reaction e+e− → D0D∗0.

We note m0 and m∗
0 the mass of D0 and D∗0 particles (for numerical computations use

m0 = 1864.8 MeV and m∗
0 = 2006.9 MeV).

We note k∗ ≡ (E∗, k⃗∗) the four-vector of the D0 particle in the center-of-mass frame, k ≡
(E, k⃗) its corresponding four-vector in the lab. frame, and pcm ≡ (Ecm, p⃗ cm) the four-vector
of the center of mass (whole initial state) in the lab. frame.

(a) Since we have pA = (9, 0, 0, 9) and pB = (3.1, 0, 0,−3.1) (we assume electrons and
positrons to be massless):

s = (pcm)2 = (pA + pB)
2

= p2A + p2B + 2 pA.pB

= 0 + 0 + 2(EA.EB − p⃗Ap⃗B)

= 2× (9× 3.1 + 9× 3.1)
√
s = 10.5641 GeV

(1)

The electron and positron masses are indeed negligible with respect to 10 GeV.

(b) We note pcm∗ the 4-vector of the center-of-mass in the center-of-mass. Therefore, by
construction, pcm∗ = (

√
s, 0, 0, 0). The Lorentz-boost transformation is given by:

Λcm =


γcm 0 0 +γcmβcm

0 1 0 0
0 0 1 0

+γcmβcm 0 0 γcm

 (2)

We can verify the sign in front of the γcmβcm factor by boosting the center-of-mass
4-vector in the lab:

pcm = Λcmpcm∗ = (γcm
√
s, 0, 0, γcm βcm

√
s).

Since βcm > 0, pcmz = γcm βcm
√
s > 0 which is indeed what we want since pcmz =

pAz + pBz > 0. Thus, we get that:

Ecm = 9 + 3.1 GeV = γcm ×
√
s (3)

pcmz = 9− 3.1 GeV = γcmβcm ×
√
s (4)

(5)
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and as a consequence

γcm =
9 + 3.1

10.56
= 1.1454 (6)

βcm =
9− 3.1

9 + 3.1
= 0.4876 (7)

(8)

(c) This computation was done in the course. Quick reminder:

√
s =

√
|⃗k∗|2 +m2

0 +

√
|⃗k∗|2 +m∗

0
2

|⃗k∗|2 +m2
0 = s+ |⃗k∗|2 +m∗

0
2 − 2 ∗

√
|⃗k∗|2 +m∗

0
2
√
s

|⃗k∗|2 +m∗
0
2 =

1

4s

(
s2 +m4

0 +m∗
0
4 − 2sm2

0 + 2sm∗
0
2 − 2m2

0m
∗
0
2
)

|⃗k∗| = 1

2
√
s

√
s2 +m4

0 +m∗
0
4 − 2sm2

0 − 2sm∗
0
2 − 2m2

0m
∗
0
2

(9)

(d) Compute the numerical values of |⃗k∗| and E∗ in GeV. Numerically we find that:

|⃗k∗| = 4.9141 GeV

E∗ =

√
m2

0 + |⃗k∗|2 = 5.2560 GeV
(10)

(e) In the c-o-m, the 4-vector of the D0 particle is by definition

k∗ ≡ (E∗, |⃗k∗| sin θ∗ cosφ∗, |⃗k∗| sin θ∗ sinφ∗, |⃗k∗| cos θ∗)

Thus, in the lab. k = Λcmk∗ :
E

kT cosφ
kT sinφ

kz

 =


γcm 0 0 −γcmβcm

0 1 0 0
0 0 1 0

+γcmβcm 0 0 γcm

×


E∗

|⃗k∗| sin θ∗ cosφ∗

|⃗k∗| sin θ∗ sinφ∗

|⃗k∗| cos θ∗

 (11)

Therefore we get that:

E = γcm(E∗ + βcm |⃗k∗| cos θ∗)

kT =
√

k2
x + k2

y = |⃗k∗| sin θ∗

kz = γcm(βcmE∗ + |⃗k∗| cos θ∗)

(12)

(f) From the previous result we get that:

tan θ ≡ kT
kz

=
|⃗k∗| sin θ∗

γcm (βcmE∗ + |⃗k∗| cos θ∗)

tan θ =
|⃗k∗|
E

sin θ∗

γcm (βcm + cos θ∗ |⃗k
∗|
E
)

(13)

By taking the arctan of the previous equation, we find that

θ ≡ arctan(tan θ) = 0.4656 rad = 26.7 ◦
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2. QED production e+e− → FF̄ .

We remind you that the total LO QED cross-section (at tree level) is given by:

σtot

(
e+e− → µ−µ+

)
=

4π

3

α2

s

√
1−

4m2
f

s

(
1 +

1

2

4m2
f

s

)
(14)

(a) See the course for the s diagram and the corresponding matrix element. The fermions
that are allowed in this reaction are f in [µ−, τµ, u, d, s, c, b ]. The tt̄ pairs can not be
produced because the c-o-m energy is below the threshold.

(b) The Υ (4S) is a bb̄ resonance. Its mass is around 10.58 GeV and its width is ΓΥ (4S) ≈
20.5 MeVand its main decays are Υ (4S) what are the mass and width of the resonance
Υ (4S) → B+B− and Υ (4S) → B0B0

(c)
√
s = 10.56 GeV

(d) Despite the fact that
√
s < MΥ (4S) we have

√
s > MΥ (4S)−ΓΥ (4S). Thus, the resonance

can be produced in the BABARexperiment. As usual, when a resonance is produced
this will boost the cross-section around the resonance mass compared to the tree-level
expectation from QED given in Eq. 15?

(e) For 2mf ≪
√
s, Eq. 15 can be simplified as:

σtot

(
e+e− → ff̄

)
=

4π

3

α2

s
(15)

This approximation is justified for muonsmµ = 0.1 GeV ≪ 10.56 GeV. Since the Υ (4S)
resonance does not decay to µ+µ− we do not expect this resonance to contribute to the
cross section and we can predict the result from LO QED formula. Since σ(e+e− →
µ+µ−)s is in GeV, we need to convert it a to an area using ℏc. This gives:

σ(e+e− → µ+µ−) ≈ 4π

3

(1/137)2

10.562
(ℏc)2

σ(e+e− → µ+µ−) ≈ 4π

3

(1/137)2

10.562
(200 10−3 10−15)2 m2

σ(e+e− → µ+µ−) ≈ 4π

3

(1/137)2

10.562
(200 10−3 10−15)21028 b

σ(e+e− → µ+µ−) ≈ 4π

3

(1/137)2

10.562
4 10−32 1028 b

σ(e+e− → µ+µ−) ≈ 7.7 10−610−321028 b

σ(e+e− → µ+µ−) ≈ 7.7 10−10 b

σ(e+e− → µ+µ−) ≈ 0.77 nb

(16)

Therefore the order of magnitude from QED LO only is correct. The difference with
the total cross section (1.15 nb ) is due to NLO corrections. Note: in this case,
this is mostly due to QED corrections with the emission of additional photons in the
intial/final state.

(f) mu and md are a few mev at most so negligible w/r to
√
s. Neglecting QCD effect we

can predict from the QED approximated formula (the quark charge intervene only in
the final vertex):

σ(uū) = Q2
uNcσ(µ

+µ−) = 4/3σ(µ+µ−) = 1.53 nb

σ(dd̄) = Q2
dNcσ(µ

+µ−) = 1/3σ(µ+µ−) = 0.38 nb
(17)
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where Qq is the charge of quark q and Nc = 3 is the number of colors. This predic-
tions are decently matching the cross section from the table. The differences coming
essentially from QCD NLO effect.

(g) For the b quark, mb ≈ 4.5 GeV can not be neglected. Thus, at LO QED we expect

σ(e+e− → bb̄)

σ(e+e− → dd̄)
=

√
1− 4m2

b

s

(
1 +

1

2

4 m2
b

s

)
where the last part is due to mb mass effect in the phase space and matrix element.
Using mb = 4.5 GeV, we expect:

• b mass in phase space only:

√
1− 4m2

b

s
= 0.52

• b mass in matrix element only:
(
1 + 1

2

4 m2
F

s

)
= 1.36

• we therefore would expect

σ(e+e− → bb̄)

σ(e+e− → dd̄)
= 0.71

(h) The actual ratio is σ(e+e−→bb̄)

σ(e+e−→dd̄)
= 2.775 much larger than our QED prediction of 0.71.

The difference is due to the production of the Υ (4S) resonance which is a NLO effect
in the photon propagator. Since the Υ (4S) decays exclusively to bb̄ pairs, this enhances
only the bb̄ production.

3. Available statistics.

(a) The instantaneous luminosity of the machine was L ≈ 10 × 1033cm−2s−1. So for a
month:

L = L × 20× 24× 3600

L = 4.8× 3.6× 1034105cm−2/month

L = 17.28 103910−24 b−1/month

L = 17.28 103910−2410−15 fb−1/month

L ≈ 17.3 fb−1/month

(18)

(b)
Nbb̄ = σ(bb̄)× Ltot = 1.11 106fb× 433fb−1 = 480 106 (19)

Plugging the branching fractions:

NB+B− == σ(bb̄)× Ltot B(Υ (4S) → B+B−) = 480× 0.514× 106 = 246.7 106

NB0B0 == σ(bb̄)× Ltot B(Υ (4S) → B0B0) = 480× 0.486× 106 = 233.3 106
(20)

6


