## M2 NPAC - Particle physics (2022-2023)

## Correction Exercise sheet № 5 - QED and PDFs

Heavy photon production at the LHC
A- Cross section $q \bar{q} \rightarrow \mu^{+} \mu^{-}$

1. There are 2 similar diagrams. The first one is the QED one from the course. The second one looks similar but with the exchange of a heavy photon rather than a QED photon. For the latter one, the 2 couplings are multiplied by $g_{H}$ and the propagator is different.
2. The QED matrix element can be written as

$$
\begin{align*}
i \mathcal{M}_{Q E D} & =\bar{u}\left(k_{1}\right)\left(i(-1) e \gamma^{\mu}\right) v\left(k_{2}\right) \times \bar{v}\left(\hat{p}_{B}\right)\left(i Q_{q} e \gamma^{\nu}\right) u\left(\hat{p}_{A}\right) \times \frac{-i \eta_{\mu \nu}}{\left(\hat{p}_{A}+\hat{p}_{B}\right)^{2}+i \epsilon} \\
i \mathcal{M}_{Q E D} & =\frac{Q_{q}}{\hat{s}+i \epsilon} \times\left(i \mathcal{M}_{f}\right)  \tag{1}\\
i \mathcal{M}_{f} & =-i(4 \pi) \frac{e^{2}}{4 \pi} \bar{u}\left(k_{1}\right) \gamma^{\mu} v\left(k_{2}\right) \times \bar{v}\left(\hat{p}_{B}\right) \gamma_{\mu} u\left(\hat{p}_{A}\right)
\end{align*}
$$

where we used $\sqrt{\hat{s}}=\left(\hat{p}_{A}+\hat{p}_{B}\right)^{2}$. For the heavy photon exchange, the changes to the matrix element are minor:

$$
\begin{align*}
i \mathcal{M}_{H} & =\bar{u}\left(k_{1}\right)\left(i g_{H}(-1) e \gamma^{\mu}\right) v\left(k_{2}\right) \times \bar{v}\left(\hat{p}_{B}\right)\left(i g_{H} Q_{q} e \gamma^{\nu}\right) u\left(\hat{p}_{A}\right) \times \mathcal{P}_{H}\left(\hat{p}_{A}+\hat{p}_{B}\right) \\
i \mathcal{M}_{H} & =\frac{g_{H}^{2} Q_{q}}{\hat{s}-M_{H}^{2}-i M_{H} \Gamma_{H}} \times\left(i \mathcal{M}_{f}\right)  \tag{2}\\
i \mathcal{M}_{H} & =\frac{g_{H}^{2} \hat{s}}{\hat{s}-M_{H}^{2}-i M_{H} \Gamma_{H}} \times\left(i \mathcal{M}_{Q E D}\right)
\end{align*}
$$

3. The total matrix element is therefore the sum $\mathcal{M}_{t o t}=\mathcal{M}_{Q E D}+\mathcal{M}_{H}$, which gives for the cross section (using the master formula)

$$
\begin{align*}
d \sigma_{t o t} & =\left|1+\frac{g_{H}^{2} \hat{s}}{\hat{s}-i M_{H} \Gamma_{H}}\right|^{2} \times d \sigma_{Q E D} \quad \text { with } \\
d \sigma_{Q E D} & =\frac{1}{2 E_{A} 2 E_{B}\left|\beta_{A}-\beta_{B}\right|} \times\left|\mathcal{M}_{Q E D}\right|^{2} \times(2 \pi)^{4} \delta^{(4)}\left(p_{A}+p_{B}-\sum_{i=1}^{i \leq 2} k_{i}\right) \prod_{i=1}^{i \leq 2} \frac{d^{3} \vec{k}_{i}}{(2 \pi)^{3} 2 E_{i}} . \tag{3}
\end{align*}
$$

The prefactor in front of $d \sigma_{Q E D}$ does solely depend on $\hat{s}$ and therefore can be factorized from the integration over $d^{3} \vec{k}_{1}, d^{3} \vec{k}_{2}$. This gives:

$$
\begin{equation*}
\sigma_{t o t}(\hat{s})=F_{H}(\hat{s}) \times \sigma_{Q E D}(\hat{s}) \tag{4}
\end{equation*}
$$

with

$$
\begin{align*}
& F_{H}(\hat{s})=\left|1+\frac{g_{H}^{2} \hat{s}}{\hat{s}-i M_{H} \Gamma_{H}}\right|^{2} \\
& F_{H}(\hat{s})=1+\frac{2 g_{H}^{2} \hat{s}\left(\hat{s}-M_{H}^{2}\right)}{\left(\hat{s}-M_{H}^{2}\right)^{2}+M_{H}^{2} \Gamma_{H}^{2}}+\frac{g_{H}^{4} \hat{s}^{2}}{\left(\hat{s}-M_{H}^{2}\right)^{2}+M_{H}^{2} \Gamma_{H}^{2}} \tag{5}
\end{align*}
$$

4. The cross section is in $1 \sqrt{\hat{s}}$ (cf. course QED) with a resonant peak at $\hat{s}=M_{H}^{2}$ (cf course on Breit-Wigner).
5. The term

$$
I_{H}(\hat{s})=\frac{2 g_{H}^{2} \hat{s}\left(\hat{s}-M_{H}^{2}\right)}{\left(\hat{s}-M_{H}^{2}\right)^{2}+M_{H}^{2} \Gamma_{H}^{2}}
$$

is exactly zero for $\hat{s}=M_{H}^{2}$. This represents the interference between the QED production, the first term (i.e. the factor 1 in $F_{H}$ ) in $F_{H}$, and a pure heavy photon production, which is the last term in $F_{H}$.
6. In the vicinity of the peak, this term is negligible if $2\left(\hat{s}-M_{H}^{2}\right) \ll g_{H}^{2} \hat{s}$, with $\hat{s}=$ $\left(M_{H}+\delta M\right)^{2} \approx M_{H}^{2}+2 M_{H} \delta M$ (to first order in $\delta M$ ). This gives the constraint that $|4 \delta M| \ll g_{H}^{2} M_{H}^{2}$ to first order in $\delta M$, which is satisfied for all $\delta M \in\left[-\Gamma_{H}, \Gamma_{H}\right]$ if

$$
\begin{equation*}
4 \frac{\Gamma_{H}}{M_{H}} \ll g_{H}^{2} \tag{6}
\end{equation*}
$$

## B- Total width of heavy photons

1. The Feynman diagram is just the vertex with a heavy photon as in-coming particle.
2. The partial width to $\mu^{+} \mu^{-}$is given by

$$
\begin{align*}
\Gamma_{\mu} & =\frac{1}{2 M_{H}} \times\left|\mathcal{M}_{\mu}\right|^{2} \times(2 \pi)^{4} \delta^{(4)}\left(k_{1}+k_{2}-q_{H}\right) \frac{d^{3} \vec{k}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} \vec{k}_{2}}{(2 \pi)^{3} 2 E_{2}}  \tag{7}\\
\Gamma_{\mu} & =\frac{1}{2 M_{H}} \times\left|\mathcal{M}_{\mu}\right|^{2} \times(2 \pi) \delta\left(2 \times k_{*}-M_{A}\right) \frac{k_{*}^{2} d k_{*} d \Omega_{1}}{(2 \pi)^{3} 2 k_{*}} \frac{1}{2 k_{*}},
\end{align*}
$$

computed in the center of the heavy photon given by $q_{H} \equiv\left(M_{H}, \overrightarrow{0}\right)$. For the second line, we integrated over $\left.(2 \pi)^{3} \delta^{( } 3\right)\left(\vec{k}_{1}+\right.$ veck $\left._{2}\right) d^{3} \overrightarrow{\vec{~}}$, which is fixing $\vec{k}_{2}=-\vec{k}_{1}$. In addition since the masses are neglected we used in the center of mass $E_{1}=E_{2}=\left|\overrightarrow{k_{1}}\right|=\left|\vec{k}_{2}\right| \equiv k_{*}$. Since $\left.\mid \mathcal{M}_{\mu}\right)\left.\right|^{2}$ is independent on $k_{*}$ and $\Omega_{1}$, we can integrate (remember that $\delta\left(2 k_{*}-M_{A}\right)=$ $\left.\delta\left(k_{*}-M_{A} / 2\right) / 2\right)$.

$$
\begin{align*}
\Gamma_{\mu} & =\frac{1}{2 M_{H}} \times\left|\mathcal{M}_{\mu}\right|^{2} \frac{1}{2} \frac{4 \pi}{(2 \pi)^{2} \times 4} \\
\Gamma_{\mu} & =\frac{1}{2 M_{H}} \frac{4 \pi}{3} \alpha g_{H}^{2} M_{H}^{2} \frac{1}{8 \pi}  \tag{8}\\
\Gamma_{\mu} & =\frac{1}{12} \alpha g_{H}^{2} M_{H} .
\end{align*}
$$

Thus, we find that $\mathcal{N}_{\mu}=\frac{1}{12}$ which is a constant number (independent of $M_{H}$ in particular).
3. Neglecting all fermions masses (which is not a good approximation for the top quark but for all the other fermions this is perfectly fine), all the partial widths to fermions are given by

$$
\Gamma_{f}=N_{c} Q_{f} \times \Gamma_{\mu}
$$

where $N_{c}$ is the number of colors, 3 for quarks and 1 for leptons, $Q_{f}$ the electric charge of fermion $f$. Summing over all fermions

$$
\begin{align*}
\Gamma_{H} & =\Gamma_{e}+\Gamma_{\mu}+\Gamma_{\tau}+\sum_{q \in[u, d, s, c, b, t]} \Gamma_{q} \\
\Gamma_{H} & =3 \Gamma_{\mu}+N_{c} \times\left(3 Q_{u}^{2}+3 Q_{d}^{2}\right) \Gamma_{\mu}  \tag{9}\\
\Gamma_{H} & =3 \times\left(1+3 Q_{u}^{2}+3 Q_{d}^{2}\right) \Gamma_{\mu} \\
\Gamma_{H} & =\frac{1+3 Q_{u}^{2}+3 Q_{d}^{2}}{4} \alpha g_{H}^{2} M_{H} .
\end{align*}
$$

Thus,

$$
\mathcal{N}_{H} \equiv \frac{1+3 Q_{u}^{2}+3 Q_{d}^{2}}{4}=\frac{2}{3}
$$

4. For $g_{H} \equiv 1, \alpha=1 / 100$, we find that

$$
\Gamma_{H}=\frac{2}{3} \frac{1}{100} 11000 \approx 6.7 \mathrm{GeV}
$$

5. $I_{H}$ is negligible if $4 \frac{\Gamma_{H}}{M_{H}} \ll g_{H}^{2}$ which is equivalent to $\frac{8}{3} \alpha \ll 1$ which is indeed always true since $\alpha \approx 1 / 100$.

C- Kinematics of the heavy photon

1. $\hat{p}_{i} \approx x_{i} \times p_{i}$
2. Since $\hat{s}=\left(\hat{p}_{A}+\hat{p}_{B}\right)^{2}=2 \hat{p}_{A} \hat{p}_{B}$ and $s=\left(p_{A}+p_{B}\right)^{2}=2 p_{A} p_{B}$, we immediatly obtain

$$
\hat{s}=x_{A} x_{B} s
$$

3. The energy and longitudinal momentum of the produced heavy photon are obtained by the 4 -momentum conservation

$$
\begin{align*}
E_{H} & =x_{A} E+x_{B} E=\left(x_{A}+x_{B}\right) E  \tag{10}\\
p z_{H} & =x_{A} E-x_{B} E=\left(x_{A}-x_{B}\right) E
\end{align*}
$$

4. This gives for the rapidity

$$
\begin{align*}
Y_{H} & =\frac{1}{2} \ln \frac{\left(x_{A}+x_{B}\right) E+\left(x_{A}-x_{B}\right) E}{\left(x_{A}+x_{B}\right) E-\left(x_{A}-x_{B}\right) E} \\
Y_{H} & =\frac{1}{2} \ln \left(\frac{x_{A}}{x_{B}}\right) \tag{11}
\end{align*}
$$

5. First, we need $\hat{s}$ to be higher than $M_{H}$ to have enough energy to produce a heavy photon. Then, because of the phase space, the total production is dominated by the production of a heavy photon at rest. Therefore

$$
\sqrt{s} \approx M_{H}
$$

6. From the previous questions, we obtain the system

$$
\begin{align*}
x_{A} x_{B} & =\frac{M_{H}^{2}}{s}  \tag{12}\\
\frac{x_{A}}{x_{B}} & =e^{2 Y_{H}}
\end{align*}
$$

which gives by multiplying and dividing the two equations

$$
\begin{align*}
x_{A}^{2} & =\frac{M_{H}^{2}}{s} e^{2 Y_{H}} \\
x_{B}^{2} & =\frac{M_{H}^{2}}{s} e^{-2 Y_{H}} \tag{13}
\end{align*}
$$

Taking the square root, one obtains the desired result.

## D- Heavy photon production at the LHC

1. To obtain a heavy resonance we need $x$ to be large. $q$ will tend to come from a valence while $\bar{q}$ is necessary a sea quark. Sea quarks are produced at low $x$ while valence quark can be produced with $x_{v} \geq 0.1$. Thus we expect $x_{A}>x_{B}$, i.e. a valence quark vs a sea quark.
2. In order to have $x_{A}>x_{B}$, we expect $Y_{H}>0$ from the Eq. 4 in the text. The numerical application gives

$$
\begin{equation*}
x_{A} \approx 0.13 \quad \text { and } \quad x_{B} \approx 0.05 \tag{14}
\end{equation*}
$$

3. $q$ is indeed mostly a valence quark ( $x_{A} \approx 0.13$ ) since it the valence quark peak, while $\bar{q}$ is a sea quark (can not be a valence quark).
4. Given the pdf for $u$ and $d$ in Fig. 1, the production will be dominated by $u \bar{u}$ and then $d \bar{d}$. In addition the charge of $Q_{u}$ is equal to $2 \times Q_{d}$, giving an additional boost (from the matrix element) to the cross section compared to $d \bar{d}$. The other $q \bar{q}$ productions are much smaller since for $x=0.13$, the pdf for sea quarks (only possibility for $s, c, b$ ) are very small while all the other parameters in the productions (especially the couplings) are identical.
