Correction Exercise sheet № 5 - QED and PDFs

Heavy photon production at the LHC

A- Cross section $q\bar{q} \rightarrow \mu^+\mu^-$

- 1. There are 2 similar diagrams. The first one is the QED one from the course. The second one looks similar but with the exchange of a heavy photon rather than a QED photon. For the latter one, the 2 couplings are multiplied by g_H and the propagator is different.
- 2. The QED matrix element can be written as

$$i \mathcal{M}_{QED} = \bar{u}(k_1) \left(i \left(-1 \right) e \gamma^{\mu} \right) v(k_2) \times \bar{v}(\hat{p}_B) \left(i \, Q_q \, e \, \gamma^{\nu} \right) u(\hat{p}_A) \times \frac{-i \, \eta_{\mu\nu}}{(\hat{p}_A + \hat{p}_B)^2 + i\epsilon} ,$$

$$i \, \mathcal{M}_{QED} = \frac{Q_q}{\hat{s} + i\epsilon} \times \left(i \, \mathcal{M}_f \right) ,$$

$$i \, \mathcal{M}_f = -i \, \left(4\pi \right) \frac{e^2}{4\pi} \, \bar{u}(k_1) \gamma^{\mu} v(k_2) \times \bar{v}(\hat{p}_B) \gamma_{\mu} u(\hat{p}_A) ,$$

(1)

where we used $\sqrt{\hat{s}} = (\hat{p}_A + \hat{p}_B)^2$. For the heavy photon exchange, the changes to the matrix element are minor:

$$i \mathcal{M}_{H} = \bar{u}(k_{1}) \left(i g_{H} \left(-1 \right) e \gamma^{\mu} \right) v(k_{2}) \times \bar{v}(\hat{p}_{B}) \left(i g_{H} Q_{q} e \gamma^{\nu} \right) u(\hat{p}_{A}) \times \mathcal{P}_{H}(\hat{p}_{A} + \hat{p}_{B}),$$

$$i \mathcal{M}_{H} = \frac{g_{H}^{2} Q_{q}}{\hat{s} - M_{H}^{2} - i M_{H} \Gamma_{H}} \times \left(i \mathcal{M}_{f} \right)$$

$$i \mathcal{M}_{H} = \frac{g_{H}^{2} \hat{s}}{\hat{s} - M_{H}^{2} - i M_{H} \Gamma_{H}} \times \left(i \mathcal{M}_{QED} \right)$$

$$(2)$$

3. The total matrix element is therefore the sum $\mathcal{M}_{tot} = \mathcal{M}_{QED} + \mathcal{M}_{H}$, which gives for the cross section (using the master formula)

$$d\sigma_{tot} = \left| 1 + \frac{g_H^2 \hat{s}}{\hat{s} - i M_H \Gamma_H} \right|^2 \times d\sigma_{QED} \quad \text{with} \\ d\sigma_{QED} = \frac{1}{2 E_A 2 E_B |\beta_A - \beta_B|} \times |\mathcal{M}_{QED}|^2 \times (2\pi)^4 \delta^{(4)} (p_A + p_B - \sum_{i=1}^{i \le 2} k_i) \prod_{i=1}^{i \le 2} \frac{d^3 \vec{k}_i}{(2\pi)^3 2 E_i} .$$
(3)

The prefactor in front of $d\sigma_{QED}$ does solely depend on \hat{s} and therefore can be factorized from the integration over $d^3\vec{k_1}$, $d^3\vec{k_2}$. This gives:

$$\sigma_{tot}(\hat{s}) = F_H(\hat{s}) \times \sigma_{QED}(\hat{s}) \tag{4}$$

with

$$F_{H}(\hat{s}) = \left| 1 + \frac{g_{H}^{2} \hat{s}}{\hat{s} - i M_{H} \Gamma_{H}} \right|^{2}$$

$$F_{H}(\hat{s}) = 1 + \frac{2 g_{H}^{2} \hat{s} (\hat{s} - M_{H}^{2})}{(\hat{s} - M_{H}^{2})^{2} + M_{H}^{2} \Gamma_{H}^{2}} + \frac{g_{H}^{4} \hat{s}^{2}}{(\hat{s} - M_{H}^{2})^{2} + M_{H}^{2} \Gamma_{H}^{2}}$$
(5)

- 4. The cross section is in $1\sqrt{\hat{s}}$ (cf. course QED) with a resonant peak at $\hat{s} = M_H^2$ (cf course on Breit-Wigner).
- 5. The term

$$I_H(\hat{s}) = \frac{2 g_H^2 \hat{s} (\hat{s} - M_H^2)}{(\hat{s} - M_H^2)^2 + M_H^2 \Gamma_H^2}$$

is exactly zero for $\hat{s} = M_H^2$. This represents the interference between the QED production, the first term (*i.e.* the factor 1 in F_H) in F_H , and a pure heavy photon production, which is the last term in F_H .

6. In the vicinity of the peak, this term is negligible if $2(\hat{s} - M_H^2) \ll g_H^2 \hat{s}$, with $\hat{s} = (M_H + \delta M)^2 \approx M_H^2 + 2M_H \delta M$ (to first order in δM). This gives the constraint that $|4\delta M| \ll g_H^2 M_H^2$ to first order in δM , which is satisfied for all $\delta M \in [-\Gamma_H, \Gamma_H]$ if

$$4 \frac{\Gamma_H}{M_H} \ll g_H^2 \tag{6}$$

B- Total width of heavy photons

- 1. The Feynman diagram is just the vertex with a heavy photon as in-coming particle.
- 2. The partial width to $\mu^+\mu^-$ is given by

$$\Gamma_{\mu} = \frac{1}{2 M_{H}} \times |\mathcal{M}_{\mu}|^{2} \times (2\pi)^{4} \delta^{(4)}(k_{1} + k_{2} - q_{H}) \frac{d^{3}\vec{k}_{1}}{(2\pi)^{3} 2 E_{1}} \frac{d^{3}\vec{k}_{2}}{(2\pi)^{3} 2 E_{2}},$$

$$\Gamma_{\mu} = \frac{1}{2 M_{H}} \times |\mathcal{M}_{\mu}|^{2} \times (2\pi) \delta(2 \times k_{*} - M_{A}) \frac{k_{*}^{2} d k_{*} d\Omega_{1}}{(2\pi)^{3} 2 k_{*}} \frac{1}{2 k_{*}},$$
(7)

computed in the center of the heavy photon given by $q_H \equiv (M_H, \vec{0})$. For the second line, we integrated over $(2\pi)^3 \delta(3)(\vec{k}_1 + veck_2) d^3 \vec{k}$, which is fixing $\vec{k}_2 = -\vec{k}_1$. In addition since the masses are neglected we used in the center of mass $E_1 = E_2 = |\vec{k}_1| = |\vec{k}_2| \equiv k_*$. Since $|\mathcal{M}_{\mu}\rangle|^2$ is independent on k_* and Ω_1 , we can integrate (remember that $\delta(2k_* - M_A) = \delta(k_* - M_A/2)/2$).

$$\Gamma_{\mu} = \frac{1}{2 M_{H}} \times |\mathcal{M}_{\mu}|^{2} \frac{1}{2} \frac{4\pi}{(2\pi)^{2} \times 4},$$

$$\Gamma_{\mu} = \frac{1}{2 M_{H}} \frac{4\pi}{3} \alpha g_{H}^{2} M_{H}^{2} \frac{1}{8\pi},$$

$$\Gamma_{\mu} = \frac{1}{12} \alpha g_{H}^{2} M_{H}.$$
(8)

Thus, we find that $\mathcal{N}_{\mu} = \frac{1}{12}$ which is a constant number (independent of M_H in particular).

3. Neglecting all fermions masses (which is not a good approximation for the top quark but for all the other fermions this is perfectly fine), all the partial widths to fermions are given by

$$\Gamma_f = N_c Q_f \times \Gamma_\mu,$$

where N_c is the number of colors, 3 for quarks and 1 for leptons, Q_f the electric charge of fermion f. Summing over all fermions

$$\Gamma_{H} = \Gamma_{e} + \Gamma_{\mu} + \Gamma_{\tau} + \sum_{q \in [u,d,s,c,b,t]} \Gamma_{q}
\Gamma_{H} = 3 \Gamma_{\mu} + N_{c} \times (3 Q_{u}^{2} + 3 Q_{d}^{2}) \Gamma_{\mu}
\Gamma_{H} = 3 \times (1 + 3 Q_{u}^{2} + 3 Q_{d}^{2}) \Gamma_{\mu}
\Gamma_{H} = \frac{1 + 3 Q_{u}^{2} + 3 Q_{d}^{2}}{4} \alpha g_{H}^{2} M_{H}.$$
(9)

Thus,

$$\mathcal{N}_H \equiv \frac{1+3\,Q_u^2 + 3\,Q_d^2}{4} = \frac{2}{3}.$$

4. For $g_H \equiv 1$, $\alpha = 1/100$, we find that

$$\Gamma_H = \frac{2}{3} \frac{1}{100} \ 1 \ 1000 \approx 6.7 \ \text{GeV} \ .$$

- 5. I_H is negligible if $4 \frac{\Gamma_H}{M_H} \ll g_H^2$ which is equivalent to $\frac{8}{3}\alpha \ll 1$ which is indeed always true since $\alpha \approx 1/100$.
- C- Kinematics of the heavy photon
 - 1. $\hat{p}_i \approx x_i \times p_i$
 - 2. Since $\hat{s} = (\hat{p}_A + \hat{p}_B)^2 = 2 \hat{p}_A \hat{p}_B$ and $s = (p_A + p_B)^2 = 2 p_A p_B$, we immediatly obtain

$$\hat{s} = x_A x_B s$$

3. The energy and longitudinal momentum of the produced heavy photon are obtained by the 4-momentum conservation

$$E_{H} = x_{A}E + x_{B}E = (x_{A} + x_{B})E$$

$$pz_{H} = x_{A}E - x_{B}E = (x_{A} - x_{B})E$$
(10)

4. This gives for the rapidity

$$Y_{H} = \frac{1}{2} \ln \frac{(x_{A} + x_{B})E + (x_{A} - x_{B})E}{(x_{A} + x_{B})E - (x_{A} - x_{B})E}$$

$$Y_{H} = \frac{1}{2} \ln \left(\frac{x_{A}}{x_{B}}\right)$$
(11)

5. First, we need \hat{s} to be higher than M_H to have enough energy to produce a heavy photon. Then, because of the phase space, the total production is dominated by the production of a heavy photon at rest. Therefore

$$\sqrt{s} \approx M_H$$

6. From the previous questions, we obtain the system

$$x_A x_B = \frac{M_H^2}{s}$$

$$\frac{x_A}{x_B} = e^{2Y_H}$$
(12)

which gives by multiplying and dividing the two equations

$$x_{A}^{2} = \frac{M_{H}^{2}}{s} e^{2Y_{H}}$$

$$x_{B}^{2} = \frac{M_{H}^{2}}{s} e^{-2Y_{H}}$$
(13)

Taking the square root, one obtains the desired result.

- D- Heavy photon production at the LHC
 - 1. To obtain a heavy resonance we need x to be large. q will tend to come from a valence while \bar{q} is necessary a sea quark. Sea quarks are produced at low x while valence quark can be produced with $x_v \ge 0.1$. Thus we expect $x_A > x_B$, *i.e.* a valence quark vs a sea quark.
 - 2. In order to have $x_A > x_B$, we expect $Y_H > 0$ from the Eq. 4 in the text. The numerical application gives

$$x_A \approx 0.13$$
 and $x_B \approx 0.05$ (14)

- 3. q is indeed mostly a valence quark $(x_A \approx 0.13)$ since it the valence quark peak, while \bar{q} is a sea quark (can not be a valence quark).
- 4. Given the pdf for u and d in Fig. 1, the production will be dominated by $u\bar{u}$ and then $d\bar{d}$. In addition the charge of Q_u is equal to $2 \times Q_d$, giving an additional boost (from the matrix element) to the cross section compared to $d\bar{d}$. The other $q\bar{q}$ productions are much smaller since for x = 0.13, the pdf for sea quarks (only possibility for s, c, b) are very small while all the other parameters in the productions (especially the couplings) are identical.