
M2 NPAC - Particle physics (2020-2021)

Correction of exercise sheet № 3 - Collisions and decays

1 Correction of the Cockroft-Walton exercise
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where KA is the kinetic energy. Generally speaking the K is given by: K = E−m = (γ−1)m.

2. The 4-vectors are in the lab
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3. The boost into the colliding particle rest frame is along the z axis and is given by:
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Similarly γ∗ × β∗ is given by:
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4. The momentum of the proton in the rest frame is given by
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Note that if the target is a proton: K∗ = K/2, K∗ being the effective energy available in the
center of mass frame for the reaction, we need to provide 2 times more energy in the lab. The
best is to have make the lab and the rest-frame similar by colliding beam-beam. We could
have neglected from the beginning the kinetic energy of the proton from the beginning and
assume the total system is at rest in the lab .



5. In the rest-frame ∗, 4-vector conservation gives (noting i the quadri momentum of αi):
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The 2 alpha particles are back-to-back, and we have: | #»p 1| = | #»p 2| = p∗, thus:
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6. In the case of a decay to α particles, m1 = m2 ≡ mα
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= 8.46 MeV

7. A much simpler resolution can be obtained by using the energy conservation in the center of
mass:

E∗[α1] + E∗[α2] = 2× E∗[α] = M∗

and then:

K∗[α] = E∗[α]−Mα

=
(MLi +Mp)− 2Mα

2
= 8.45 MeV

2 Correction of the luminosity exercise

1. The instantaneous luminosity is given by the formula in the course.
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,

with N1 and N2 the number of particles per bunch in beam 1 and beam 2. In this case, both are
proton beams with Np = 1.1×1011 proton per bunch, f is the frequency of collision, the spacing



between bunches being 25 ns, the collision frequency is therefore f = 1/(25 ns) = 40 MHz.
Putting it all together.

L =
2808× (1.1)2 × 1022 × 40× 106

4
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cm−2.s−1 (8)

L = 13.6× 103+22+1+6/(8.25× 10−2)× 0.842cm−2.s−1 (9)

L ≈ 1.4 1034 cm−2.s−1 (10)

2. The barn is the appropriate unit for cross section measurement 1 b = 10−24 cm2. Therefore a
nanobarn is 1 nb = 10−33 cm2, which gives:

L ≈ 14 nb−1.s−1 (11)

3. This gives the total integrated luminosity just by multiplying with a year duration.

L = 14 nb−1.s−1 × 107s = 140 fb−1 (12)

Note that the actual integrated luminosity recorded by the CMS experiment was in 2016 36 fb−1,
45 fb−1 in 2017 and 60 fb−1 in 2018.

4. The total number of Higgs bosons produced per year in a single experiment is therefore:

NH = σ(pp→ H)× L = 50000fb× 140fb−1 = 7× 106 (13)

5. The total number of Higgs boson produced per year which are potentially usable in the diphoton
channel is thus:

NHγγ = σ(pp→ H)× LB(H → γγ)× ε ≈ 7.106 × 2.10−3 × 0.5 = 7000 (14)


