Correction of exercise sheet № 3 - Collisions and decays

1 Correction of the Cockroft-Walton exercise

1. $\frac{\left|p_{A}\right|}{M_{A}}=\ll 1$, then the total energy can be written as:

$$
E_{A}=\sqrt{m_{A}^{2}+p_{A}^{2}}=m_{A} \sqrt{1+\frac{p_{A}^{2}}{m_{A}^{2}}} \approx m_{A}+\frac{p_{A}^{2}}{2 m_{A}} \equiv m_{A}+K_{A}
$$

where K_{A} is the kinetic energy. Generally speaking the K is given by: $K=E-m=(\gamma-1) m$.
2. The 4 -vectors are in the lab

$$
\begin{align*}
q_{L i} & =\left(M_{L i}, 0,0,0\right) \\
q_{p} & =\left(E_{p} \approx M_{p}+\frac{p_{z}^{2}}{2 m}, 0,0, p_{z}\right) \tag{1}
\end{align*}
$$

Total mass of the system:

$$
\begin{align*}
\left(M_{*}\right)^{2} & =\left(q_{L i}+q_{p}\right)^{2}=\left(m_{L i}+E_{p}\right)^{2}-p z^{2} \\
& =m_{L i}^{2}+E_{p}^{2}-p_{z}^{2}+2 m_{L i} E_{p}=m_{L i}^{2}+m_{p}^{2}+2 m_{L i}\left(m_{p}+K_{p}\right) \tag{2}\\
& =\left(m_{L i}+m_{p}\right)^{2}+2 m_{L i} K_{p} \approx\left(m_{L i}+m_{p}\right)^{2}
\end{align*}
$$

3. The boost into the colliding particle rest frame is along the z axis and is given by:

$$
\begin{equation*}
\gamma_{*}=\frac{E_{*}}{M_{*}} \approx \frac{m_{L i}+E_{p}}{m_{L i}+m_{p}} \tag{3}
\end{equation*}
$$

Similarly $\gamma_{*} \times \beta_{*}$ is given by:

$$
\begin{equation*}
\gamma_{*} \times \beta_{*}=\frac{p_{*}}{M_{*}} \approx \frac{p_{z}}{m_{L i}+m_{p}} \tag{4}
\end{equation*}
$$

4. The momentum of the proton in the rest frame is given by

$$
\begin{align*}
E_{p *} & =\gamma_{*} E_{p}-\gamma_{*} \beta_{*} p_{z}=\frac{E_{*}}{M_{*}} E_{p}-\frac{p_{*}}{M_{*}} p_{z} \\
& =\frac{m_{L i}+E_{p}}{M_{*}} E_{p}-\frac{p_{z}}{M^{*}} p_{z} \\
& =\frac{m_{L i} E_{p}+m_{p}^{2}}{M_{*}} \tag{5}\\
K_{*}+m_{p} & =\frac{m_{L i}\left(m_{p}+K\right)+m_{p}^{2}}{m_{L i}+m_{p}} \\
K_{*} & =\frac{m_{L i}}{m_{L i}+m_{p}} K<K!!!!
\end{align*}
$$

Note that if the target is a proton: $K_{*}=K / 2, K_{*}$ being the effective energy available in the center of mass frame for the reaction, we need to provide 2 times more energy in the lab. The best is to have make the lab and the rest-frame similar by colliding beam-beam. We could have neglected from the beginning the kinetic energy of the proton from the beginning and assume the total system is at rest in the lab .
5. In the rest-frame $*, 4$-vector conservation gives (noting ${ }_{i}$ the quadri momentum of α_{i}):

$$
\begin{align*}
& E_{*}=M_{*}=E_{1}+E_{2} \\
& \vec{k}_{*}=\overrightarrow{0}=\vec{p}_{1}+\vec{p}_{2} \tag{6}
\end{align*}
$$

The 2 alpha particles are back-to-back, and we have: $\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right|=p_{*}$, thus:

$$
M_{*}=\sqrt{m_{1}^{2}+p_{*}^{2}}+\sqrt{m_{2}^{2}+p_{*}^{2}}
$$

We get to:

$$
\begin{align*}
\sqrt{m_{2}^{2}+p_{*}^{2}} & =\left(M_{*}-\sqrt{m_{1}^{2}+p_{*}^{2}}\right)^{2} \\
m_{2}^{2}+p_{*}^{2} & =M_{*}^{2}+m_{1}^{2}+p_{*}^{2}-2 * \sqrt{m_{1}^{2}+p_{*}^{2}} M_{*} \\
\sqrt{m_{1}^{2}+p_{*}^{2}} & =\left(M_{*}^{2}+m_{1}^{2}-m_{2}^{2}\right)^{2} /\left(4 M_{*}^{2}\right) \tag{7}\\
p_{*} & =\frac{\sqrt{M_{*}^{4}+m_{1}^{4}+m_{2}^{4}-2 m_{1}^{2} m_{2}^{2}-2 M_{*} m_{1}^{2}-2 M_{*}^{2} m_{2}^{2}}}{2 M_{*}}
\end{align*}
$$

6. In the case of a decay to α particles, $m_{1}=m_{2} \equiv m_{\alpha}$

$$
\begin{aligned}
p_{*} & =\frac{\sqrt{M_{*}^{2}-4 m_{\alpha}^{2}}}{2} \\
K_{*}[\alpha] & =\frac{p_{*}^{2}}{2 M_{\alpha}} \\
& =\frac{\left(M_{L i}+M_{p}\right)^{2}-4 M_{\alpha}^{2}}{8 M_{\alpha}} \\
& =8.46 \mathrm{MeV}
\end{aligned}
$$

7. A much simpler resolution can be obtained by using the energy conservation in the center of mass:

$$
E_{*}\left[\alpha_{1}\right]+E_{*}\left[\alpha_{2}\right]=2 \times E_{*}[\alpha]=M_{*}
$$

and then:

$$
\begin{aligned}
K_{*}[\alpha] & =E_{*}[\alpha]-M_{\alpha} \\
& =\frac{\left(M_{L i}+M_{p}\right)-2 M_{\alpha}}{2} \\
& =8.45 \mathrm{MeV}
\end{aligned}
$$

2 Correction of the luminosity exercise

1. The instantaneous luminosity is given by the formula in the course.

$$
\mathcal{L}=\frac{n_{\text {bunch }} f N_{1} N_{2}}{4 \sqrt{\epsilon_{x}^{*} x_{y}^{*} \beta_{x}^{*} \beta_{y}^{*}}} \times R_{\phi} \quad \text { with } \quad R_{\phi}=\frac{1}{\sqrt{1+\phi^{2}}}
$$

with N_{1} and N_{2} the number of particles per bunch in beam 1 and beam 2. In this case, both are proton beams with $N_{p}=1.1 \times 10^{11}$ proton per bunch, f is the frequency of collision, the spacing
between bunches being 25 ns , the collision frequency is therefore $f=1 /(25 \mathrm{~ns})=40 \mathrm{MHz}$. Putting it all together.

$$
\begin{align*}
\mathcal{L} & =\frac{2808 \times(1.1)^{2} \times 10^{22} \times 40 \times 10^{6}}{4 \sqrt{3.75 \times 10^{-4}} \times 55^{2}} \times \frac{1}{\sqrt{1+0.64^{2}}} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \tag{8}\\
\mathcal{L} & =13.6 \times 10^{3+22+1+6} /\left(8.25 \times 10^{-2}\right) \times 0.842 \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \tag{9}\\
\mathcal{L} & \approx 1.410^{34} \mathrm{~cm}^{-2} . \mathrm{s}^{-1} \tag{10}
\end{align*}
$$

2. The barn is the appropriate unit for cross section measurement $1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$. Therefore a nanobarn is $1 \mathrm{nb}=10^{-33} \mathrm{~cm}^{2}$, which gives:

$$
\begin{equation*}
\mathcal{L} \approx 14 \mathrm{nb}^{-1} \cdot \mathrm{~s}^{-1} \tag{11}
\end{equation*}
$$

3. This gives the total integrated luminosity just by multiplying with a year duration.

$$
\begin{equation*}
\mathcal{L}=14 \mathrm{nb}^{-1} \cdot \mathrm{~s}^{-1} \times 10^{7} \mathrm{~s}=140 \mathrm{fb}^{-1} \tag{12}
\end{equation*}
$$

Note that the actual integrated luminosity recorded by the CMS experiment was in $201636 \mathrm{fb}^{-1}$, $45 \mathrm{fb}^{-1}$ in 2017 and $60 \mathrm{fb}^{-1}$ in 2018.
4. The total number of Higgs bosons produced per year in a single experiment is therefore:

$$
\begin{equation*}
N_{H}=\sigma(p p \rightarrow H) \times L=50000 \mathrm{fb} \times 14 \mathrm{ffb}^{-1}=7 \times 10^{6} \tag{13}
\end{equation*}
$$

5. The total number of Higgs boson produced per year which are potentially usable in the diphoton channel is thus:

$$
\begin{equation*}
N_{H \gamma \gamma}=\sigma(p p \rightarrow H) \times L \mathcal{B}(H \rightarrow \gamma \gamma) \times \epsilon \approx 7.10^{6} \times 2.10^{-3} \times 0.5=7000 \tag{14}
\end{equation*}
$$

