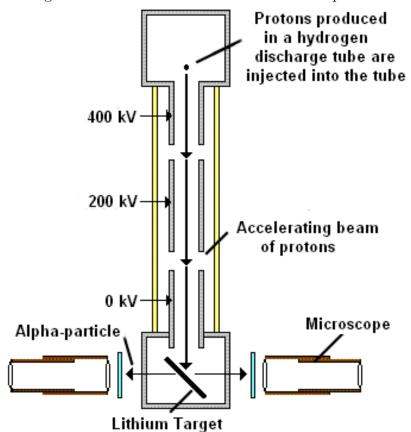
Exercise sheet № 3 - Collisions and decays

1 Cockroft-Walton experiment: course complement

In 1932, Cockroft and Walton smashed protons on to a lithium target. A scheme of the experiment is provided on Fig. 1, the z axis is oriented along the proton bram. The kinetic energy of the protons was adjustable in the actual experiment and in this exercise, we use a proton kinetic energy of K[p] = 800 keV. Lithium atoms capture proton which in turn decay to $2 \alpha \equiv {}_{4}^{2}\text{He}$


$$_{3}^{7}Li+p\rightarrow\alpha+\alpha$$

. The masses of the different particles are:

- $m[{}^{7}_{3}Li] = 6535.4 \text{ MeV},$
- m[p] = 938.3 MeV,
- $m[\alpha] = 3728.4 \text{ MeV}.$

We note \vec{p}_A the 3-momentum of A particle and q_A its 4-momentum. We remind you that the kinetic energy of a particle A can be defined as $K_A = E_A - m_A$. The lithium in the target is considered at rest in the lab and the proton 3-momentum is given by $\vec{p}_p = (0, 0, p_z)$.

Figure 1: Scheme of the Cockroft-Walton experiment

- 1. Show that when $|\overrightarrow{p}_A| \ll m_A$, the total energy can be expressed as $E_A \approx m_A + \frac{p_A^2}{2m_A}$ and that therefore the kinetic energy takes the classical mechanic form $K_A = \frac{p_A^2}{2m_A}$. Show that $K_A = (\gamma 1) m_A$.
- 2. Express the total mass of the colliding particles M_* as a function of m_{Li} , m_p and K_p . Can you neglect K_p in this expression?
- 3. Express the boost β_* from the lab to the rest frame of the colliding particles as a function of m_{Li} , m_p and E_p . What is the expression of the factor $\gamma_* \times \beta_*$ as a function of p_z , m_{Li} , m_p .
- 4. Compute the total energy E_{p*} of the proton in the rest-frame of the colliding particles by boosting the proton four momentum to the center-of-mass rest frame. Deduce from that the kinetic energy K_{p*} of the proton in the rest-frame of the colliding particles (Reminder $K_{p*} = E_{p*} m_p$). Can it be neglected?
- 5. General two body decay of a particle M to two particles $p_1, p_2 : M \to p_1 p_2$. We consider the aforementioned two body decay in the center of mass frame In the center of mass frame, *i.e.*the quadri vector of M is $q_M \equiv (M_*, 0, 0, 0)$. Justify that $|\vec{p}_1| = |\vec{p}_2|$. We note $p_* \equiv |\vec{p}_1| = |\vec{p}_2|$. Compute p_* with respect to m_1, m_2 and M_* .
- 6. Apply the previous question to the case of the process $Li + p \to \alpha + \alpha$. Find the p_* of the α particles as well as their kinetic energy $K_*[\alpha]$ as expected from classical mechanics $K_*[\alpha] = p_*^2/(2 m_\alpha)$, find out the numerical value.
- 7. Find the same result using the conservation of the energy in the center of mass frame, what is the numerical value? Why is it slightly different from the previous question?
- 8. Justify this is the same kinetic energy as in the lab frame. The measured energy by Cockroft-Walton was about 8 MeV. Does it correspond to your result?
- 9. Epilogue. This was the first proof that mass can actually be transformed in actual kinetic energy and earned the Nobel prize to Cockroft and Walton and 1951.

2 Luminosity: course complement

In Tab. 1 are presented the design parameter of the Large Hadron Collider.

Table 1: Large Hadron Collider parameters.

parameter	nominal value
transverse emittance	3.75 $\mu {\rm m}$
eta^*	$0.55 \mathrm{m}$
number of bunches	2808
number of proton/bunch	1.1×10^{11}
bunch spacing	$25 \mathrm{ns}$
crossing angle	$285 \mu rad$
Piwinski angle, ϕ	0.64

- 1. Assuming the transverse emittance and β^* are identical in the x and y dimension, compute the instantaneous luminosity \mathcal{L} in cm⁻².s⁻¹.
- 2. Convert your result in $\,\mathrm{nb.s^{-1}}$.

- 3. During the course of a year, the LHC runs for approximately 10^7 s. What is the total integrated luminosity per year, assuming the instantaneous luminosity to be constant with time.
- 4. The Higgs boson cross section at the LHC (13 TeV) is approximaltely $\sigma(pp \to H) = 50$ pb. How many Higgs boson are produced per year at the LHC?
- 5. The Higgs boson branching ratio $\mathcal{B}(H\to\gamma\gamma)=2\times10^{-3}$. How many Higgs boson are recorded at the LHC during a year, assuming the experimental efficiency to record a Higgs boson decaying in the diphoton channel to be $\epsilon\approx50~\%$?