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M2 NPAC – Particle physics (2022-2023) 

 

 

Exercise sheet № 4  - Introduction to strong interaction: isospin, SU(3) 

 
As usual, it is necessary to use the PDG to solve the exercises. Here, in particular, 
it would be useful to have in mind some properties of the light hadrons (containing 

u, d and s quarks), and especially strange hadrons (e.g.   
,0  

-,0, K, K0, K ̅0). It 

is therefore recommended to go through the corresponding tables before starting. 
 
 
Exercise 1 

Why is the reaction →K0X not observed? In other words, show that such a particle 
X cannot exist. 
 
 
Exercise 2: the deuteron 
The deuteron is a bound state of a proton (p) and a neutron (n). This is the only 
observed bound state of two nucleons. It has only one energy level: the 

fundamental. Spectroscopic measurements show that its JP is 1+. 

a) What are the quantum numbers s and ℓ of the deuteron? 
b) What are the quantum numbers s, ℓ and JP that would be possible for bound 

states of p-p and n-n, if these states existed? 
c) Experiments of nucleon-nucleon scatterings and other experimental results 

show that strong interaction between nucleons does not depend on their 
electrical charge. How this observation is compatible with the non-existence of 
bound states n-n and p-p? 

d) Why is 0-isospin attributed to the deuteron? 
 
 

Exercise 3 
An experiment of p-p and p-n scatterings at a given energy in the CM frame yielded 
these two measurements of total cross sections:    

 + = (pp → d+) = (3.150.22) mb 

 0 = (np → d0) = (1.50.3) mb 
Supposing that the reactions are due to a strong interaction process, show that 
isospin conservation allows predicting the ratio of these cross sections (NB. Id=0, 

see exercise 2). Use the notion of isospin amplitude TI≡I,I3|Hint|I,I3, where Hint is 

the  Hamiltonian of the interaction. Explain the fact that this amplitude does not 
depend on I3. 
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Exercise 4 

In this exercise we explore a few aspects of ± p scattering.  
a) Which final states can be produced, containing only one pion and one nucleon 

(N)? 
 

When the energy in the CM frame s is close to the  baryon mass, the cross section 
presents a peak; the process becomes resonant (see Figure 1). We consider that the 

 particle is produced as an intermediate state between the initial and the final 
states of the interaction process (“intermediate resonance”). For the properties of 

the , see Figure 1 and the PDG Booklet. 

b) Which interaction is responsible to the creation and the decay of the  

resonance? What is the lifetime of the ? 
c) Considering only isospin-related quantum numbers, write the states of the 

systems (+,p), (-,p), (0 ,n) in the basis of eigenvectors common to I2 and I3, 
where I and I3 are, respectively, the total isospin and its projection. 

d) We define: 

 + = (+ p → + p), 

 0 = (- p → 0 n), 

  - = (- p → - p). 

Using =f|Hint|i², write these three total cross sections as functions of the 

isospin amplitudes TI=1/2( N) and TI=3/2( N) (where TI≡I,I3|Hint|I,I3). 

e) In the case where these processes are resonant with s~1.2 GeV, explain why 

TI=1/2( N)=0. Deduce the value of the ratio 

     (+ p → ++
→  N) / (- p → 

→  N) 

and compare your result to the distributions of Figure 1. 
 
f) We also notice other 

resonances on Figure 1. 
What is a priori the 
isospin of the two 
resonances located 

between s=1.4 GeV and 

s=1.8 GeV? 
 

 
 

Figure 1: Cross section as a function of the invariant mass of p system. 
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Exercise 5 Strangeness model: forbidden-allowed 

a) Is the reaction 0 →  allowed? If it is, by which interaction? 

b) Is it possible to observe the reaction  →  X? (in other words, is there a possible 
candidate for the X particle in such a reaction?) 

c) Is the reaction - p → 0 allowed? If it is, indicate by which interaction and 
make a qualitative comment on the corresponding cross section. 

d) For all the allowed reactions in a), b) and c) above, draw the Feynman diagrams. 
 

 
Exercise 6  

In this exercise we consider the following strong-interaction decays of the  meson: 

→K+K- and →.  

Estimate the ratio of the corresponding decay widths:  R=(→)/(→K+K-). 
Suppose that the matrix elements are the same for these two decays1.  

The experimentally measured value of R is 0.350.2. This result was at the origin 
of the theoretical puzzle that led Zweig to postulate the existence of the s-quark. 
Explain why.  
 
 
Exercise 7 The spin of the pion 
The spin of the charged pion was determined by measuring the total cross sections 

of the reactions pp→+d and +d→pp. At the time of this experiment, spins of the 
proton (1/2) and of the deuteron (1) were already known.  
a) What is the transformation that allows passing from one reaction to the other? 

What would be the relation between the matrix elements of these two reactions 
if this transformation was a symmetry? How is the cross section affected when 
we take into account the non-distinguishability of the two protons in the final 
state of the second reaction? 

b) For the first reaction, a proton beam with a kinetic energy of Tp=340 MeV was 
used with a fixed target of protons. For the second reaction, what should be the 

kinetic energy of a + in a beam colliding with a fixed target of deuteron to ensure 
the same total energy in the centre of mass frame? Explain why is it necessary 
to have the same total energy in the CM frame in order to compare these two 
reactions. 

c) Knowing that these reactions are allowed, show that the spin of the pion cannot 
be half integer. 

d) Express the cross sections of these two reactions as functions of the spins of 
the proton and the deuteron. Using at the ratio of these cross sections together 
with the results: 

• (pp→+d)=0.180.06 mb, 

• (+d→pp)= 3.10.3mb, 
obtained for the same total energy in the CM frame (the energy calculated in b 
above), deduce the value of the spin of the pion. Compute the uncertainty on 
this value, considering that the given uncertainties are the dominant ones and 
neglecting the correlations between them.   
 
 

 
Exercise 8 The R-ratio  
Consider the following processes of e+e- annihilation.  

 
1 We precise that our hypothesis is done on matrix elements of transition between given states of spin. These elements 

are supposed to be equal for all spin states.  
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The eq factor represents the electric charge of quarks, and the factor Nc appears 
because there is one diagram per quark color (Nc =3).  

a) Give the formula of the R-ratio, defined as (e+e-→hadrons)/.  

b) Figure 2 shows the experimentally measured R-ratio as a function of s. There 
are two “steps” between the levels indicated by horizontal lines, in the region 1-
20 GeV. What do these steps correspond to? Note that they are located near the 

sharp spikes corresponding the resonances , J/, ’ and  (for their 
characteristics, see the PDG Booklet). Check that the three values in the figure 
agree with the theoretical expression of R, found above. Explain the importance 
of this experimental result. 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

Figure 2 : The R-ratio. 

 

 
Exercice 9 
We consider four decay processes: 

(i)  →  0 

e+ 

e-  

+(q) 

-(q) 
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(ii) 0 →  0 

(iii) + →  + 

(iv) + →  0 + 
a) Show that the decays (i) and (ii) cannot occur by strong or electromagnetic 

interactions. 
b) Taking into account the relevant conservation laws except for G-parity, by which 

interaction could proceed the decays (iii) and (iv)? 
c) Supposing that the matrix elements in the processes (iii) and (iv) are the same, 

estimate the ratio of branching fractions of these two decays. Compare your 
result with the information given in the PDG concerning the partial widths of 
the two decays. Is the same-matrix-element hypothesis acceptable? Make any 
comment that seems useful. 

d) Compute the G-parity eigenvalues for the particles and states involved in 
processes (iii) and (iv). 

e) Answer again question b), this time using G-parity. Comment your observations 
from question c). 

f) Draw the Feynman diagrams of processes (i), (iii) and (iv). 
g) Explain why the G-parity is conserved in strong-interaction processes, unlike 

in weak- or electromagnetic-interaction processes.  
 
 
Exercice 10 antiquarks in SU(3) and SU(2) 
Assuming an SU(3) symmetry for the three light quarks (u,d,s), we saw that the 

symmetry transformation is 

  

q
i
' = U

ij

j=1

3

å q
j

 , where 
jq  represent the u , d  and s  

states for j=1, 2 and 3, respectively. We recall that 
ijU  are the elements of the 

general 3x3 transformation matrix of SU(3), written as  , where  is the 

vector of SU(3) generators, and  is the vector of the corresponding 8 real 
coefficients. From quantum field theory, we know that the antiparticle states must 
transform via complex conjugate matrices. In our case, for antiquarks: 

  

q
i
' = U

ij

*

j=1

3

å q
j

. In this exercise we use the last expression to show some features of 

antiquarks. 

a) Show that the SU(3) generators for antiquarks are the matrices . 
b) Representing the antiquark states by the column vectors 

1 0 0

0 , 1 , 0 ,

0 0 1

     
     

= = =     
     
     

u d s  

deduce that they are represented in the (I3,T) plane by the SU(3) multiplet 3 . 
 
The SU(2) subgroup of SU(3) (generated by T1, T2 and T3) has a special property. It 
turns out that there exists a unitary transformation, noted RI, that changes 

-T*
i  → Ti  (i=1,2,3). We recall that to accomplish this, RI must satisfy 

* †( )  ,     for 1,2,3.− = =I i I iR T R T i  

c) Show that the RI matrix must commute with T2 and anti-commute with T1 and 
T3. Show that the matrix is 
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0 1 0

1 0 0 .

0 0 1

− 
 

=  
 
 

IR  

From now, to simplify, we can work in the 2x2 sub-space corresponding to SU(2). 

d) Show that, inside the SU(2) subgroup, instead of applying the generators on 
antiquarks, one can simply use T1, T2 and T3 on both quarks and antiquarks, 

provided that the antiquark states are replaced by IR q . 

e) Write explicitly IR q for u  and d . This is the 2  multiplet of SU(2).  

f) Using these states, extract I3 for these two antiquark states and check that they 
correspond to the values found in b). 

 
The results of e) and f) allow us to change known isospin states involving particles 
only into states involving particles and antiparticles. 
g) Write the isospin states that would be observed for the (non-physical) mesons 

made of the two light quarks. 
h) From these, get the corresponding states made of one light quark and one light 

antiquark. Compare with the expression of the isospin triplet, and with the 

quark contents of the  mesons and the .  
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