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M2 NPAC – Particle physics (2022-2023) 

 

 

Exercise sheet № 4 - Introduction to strong interaction: isospin, SU(3) 

Brief correction 

 

Exercise 1 
 → K0 X  

 is a baryon  X is a baryon to ensure the conservation of the baryonic number (K0 is a 

meson).  

The lightest baryon with the required electric charge is the neutron n, but 

m() < m(K0) + m(n). Hence this decay is forbidden.  

 
Although when writing  without the mass it designates the lightest state called , if we 

consider the (1520) instead of the lightest , the mass is high enough and the decay can 

happen. The PDG shows that (1520) → K0 n and [(1520)] ~ 16 MeV  strong interaction. 

Note that the K0 in the final state guarantees the strangeness conservation. 

 

 

Exercise 2 
a) J=1  s=0, ℓ=1 or s=1, ℓ=0 (in principle, there is also s=1, ℓ=1 or 2, but these would 

have been excited states and we know that only the fundamental state exists). 

We know that P=PpPn(-1)ℓ =(-1)ℓ  = +1    ℓ even    s=1, ℓ=0 

b) p-p and n-n are systems with two identical spin-½ fermions.  
     = (-1) s + ℓ +1 = -1    s+ℓ even 

    s even ℓ even or s odd ℓ odd 

First states: s=0, ℓ=0, JP=0+ 

  s=1, ℓ=1, JP=0-, 1-, 2- 

c) Given that strong interaction between nucleons does not depend on the electric charge, 

and as the deuteron has only one bound energy level, the only possible state is s=0, ℓ=0 
(ℓ=1 and beyond cannot be bound states for p-p and n-n, because they are not bound 

states for the deuteron).  

If the interaction between nucleons depends on their spin states, we can postulate that the 
state s=0, in the case of two nucleons, is energetically unflavored with respect to s=1. 

Then it is possible that this state does not exist as a bound state, and the puzzle is solved.  

d) Isospin of a system of two nucleons:  

=   =


= = = = =


 − −

+


= = =

 − −

= = − =



− −
−

= = =

3 3

3

3

3

1 1
0 or 1

2 2

1 1
1, 1 ,

2 2

1 1 1 1 1 1 1 1
, , , ,

2 2 2 2 2 2 2 2
Triplet 1, 0

2

1 1 1 1
1, 1 , ,

2 2 2 2

1 1 1 1 1 1 1 1
, , , ,

2 2 2 2 2 2 2 2
Singlet   0, 0   

2

tot

tot tot

tot tot

tot tot

tot tot

I I

pp I I I I

pn I I

nn I I

np I I

 

Similarly to the spin, the function of the isospin triplet (singlet) is symmetric (anti-

symmetric) under exchange.  
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As strong interaction does not depend on the electric charge, if a bound state I=1, I3=0 

existed, then the states I3 = +1,-1 would also exist. Knowing that we only observe one 
bound state of n-p, it must be the isospin singlet (I=0). 

Another way to answer: with the isospin formalism, p and n are two quantum states of 
a “single particle”, the nucleon (N). The deuteron becomes a state of two identical  

spin-½ fermions. The total function has now an isospin component:  

 = (-1) s+ ℓ+1isospin=-1 (anti-symmetric). 

As we know that s=1, ℓ=0     isospin=-1     isospin singlet (I=0) 

 

Exercise 3 
The two processes are due to strong interaction  isospin conservation  

• p + p  → d + +. We have the isospin states: 

|p> = |1/2,1/2>  
|d> = |0,0> 
|+> =|1,1> 

 
|pp> = |1/2,1/2>|1/2,1/2>=|1,1>  
|d+> =|0,0>|1,1> = |1,1>  

 
<pp |Hint| d+>=T1 

 
• n + p  → d + 0. We have the isospin states: 

|n> = |1/2,-1/2>  
|0> =|1,0> 

 
|np> = |1/2,-1/2>|1/2,1/2>=(|1,0>-|0,0>)/2  

|d0> = |1,0> 

 
<np |Hint| d0>=<1,0 |Hint(|1,0>-|0,0>)/2)= <1,0 |Hint|1,0>/2=T1/2 

 

Given that isospin is conserved by the strong interaction, the Hamiltonian can only connect 
initial and final states with the same isospin (same I and same I3). 
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    (in agreement with measurements). 

Strong interaction depends on I but not on I3 (inside an isospin multiplet there is a 
symmetry, and the strong interaction is the same for all the members of the multiplet). 

This behavior (charge-independence of strong interaction) is reflected in the amplitude. 

 
 

Exercise 4 

a) Due to baryonic-number and electric-charge conservation: 0

p p

p n

p p
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→
 →

 

b) Nothing forbids the strong interaction in these reactions (only hadrons, no flavour 
violation). Moreover, the width of the  resonance is 120 MeV (PDG booklet and figure)  

() = 0.510-23 s, and  → Nπ are dominant decay modes of the . 

We can conclude that the resonance is produced and decays via strong interaction.  
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c)  
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d)  
<+p |Hint| +p >= T(3/2) 

<0n |Hint|-p  >= 2/3 T(3/2) - 2/3 T(1/2) 

<-p |Hint| -p >= 1/3 T(3/2) + 2/3 T(1/2) 

The cross sections are proportional to | |2 

 
e) The resonance () has 4 charge states (++,+,0,-). It has an isospin of 3/2 (see 

PDG booklet). If the   is an intermediate resonance in the process, the amplitudes T1/2 

are forbidden due to isospin conservation. Hence:  
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f) In this region, we see resonances of - p but not of p +  for these resonances, 

necessarily I=1/2. 

 
 

Exercise 5 
a)  →   allowed, electromagnetic interaction (indicated by the photon). 

I()=1 I3 = 1, 0 

I()=0 I3 = 0 

Only the initial state with I3 = 0 (0) is allowed due to charge conservation. 

 
b)  → X +    

First order answer:  
There is a photon  electromagnetic interaction  strangeness conservation 

 X is a strange baryon (baryonic quantum number conservation)  

But the  is the lightest strange baryon and therefore this is impossible. 

Second order answer: 

Weak interaction is possible besides electromagnetic interaction. This is the case here, 

and the process is possible with a small branching ratio (it is useful to draw the diagram 
to be convinced). 

 
c)  p →  0   Strangeness is not conserved  weak interaction. This reaction has a very 

low probability but is not forbidden. Experimentally, it is very difficult to observe among 
all the other final states of the  p reaction.  

 

d) Possible diagrams (not the only one) of the question c: 

 

p 

  - 0 
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Exercise 6 
  → K+K-  

  →   

We have to use the formula of the width for the case a → 1+2 in the PDG. Under the 

hypothesis that the matrix elements corresponding to the different states of spin are the 

same: 
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The numerical factors 1/3x3 that appear both in the numerator and the denominator are 

due to the average of the matrix elements for different spin states of the initial state. The 

factors 3 and 1 in the numerator and denominator, respectively, account for the sum of 
matrix elements for different spin states in each process. Note that the mean value on the 

initial state has no effect (3*1/3) because according to our hypothesis the matrix elements 

of the different spin states are the same (it has been kept here just as a reminder that in 
general it is necessary to do this average).  
We also need to calculate the momenta in the centre of mass frame of the :  
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Given that ~
2

K

m
m , there is no much phase space available and this reduces the cross 

section of the decay into 2 kaons.  We obtain: R=4.28 

Experimentally we measure R = 0.35 0.2. The matrix elements of these two decays must 

be different. This can be understood by the fact that the  meson is a ss state, which yields 

two different diagrams of the two decays. 

 
 

Exercise 7 
p p  → d +  (1)  

d + → p p  (2)  

a) The connection between (1) and (2) is a time reversal operation. Then, we conclude 
that the matrix elements connecting particular spin states must be identical (strong 

interaction conserves C and P, all interactions conserve CPT, hence T must be conserved).  

 
As each of the particular-spin-state matrix elements are identical, we may write:  

22 2

, , ,

int( ) int( ) , , ,
p p d p p d

d p p

m m m m m m m m

i f m m m m

f T i p p T d T
 



=      

Due to the two indistinguishable particles (protons) in reaction (2), a factor ½ appears in 

the cross section (see additional notes). Indeed, the final state, where the direction of one 
of the protons is given by the coordinates (, ), is the same as that with the coordinates 

(-, +)  we need to integrate only on half of the total solid angle.  

b) We must ensure the equality of s in these two reactions.  
In p p → d + 
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In d + →pp   
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It is necessary to have both experiments with the same energy in the centre of mass 

frame to ensure that the matrix elements are equal. In principle they could depend on 
the momenta. 

 
c) Conservation of total angular momentum. 

J = L + S  

Jpp = Spp + Lpp  Spp =0 or 1  Lpp = 0, 1, 2… so Jpp is integer. 
Jd = Sd + Ld = 1 + S + Ld  Ld = 0, 1, 2…  

Conservation of J  Jd is integer  S is integer 

 

d)  

s
pp®pd

s( ) µ pf
*

p
i

*
×
1

s
T
2

× 2s
p

+1( ) 2sd +1( )

s
pd®pp

s( ) µ pi
*

p
f

*
×
1

s
T
2

×
1

2
× 2s

p
+1( ) 2sp +1( )

 

In these two expressions, there are factors corresponding to the sum of matrix elements 
for all possible spins of the final state particles. These are just multiplicative factors as we 

neglect the spin dependence of the matrix elements.  For this reason, it is useless to 

average for different spins in the initial state. The factor ½ in the second expression 
corresponds to the two indistinguishable protons. The centre-of-mass momentum of 

particles in the final (initial) state of the second reaction is the same as the one of particles 

in the initial (final) state of the first.   
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We had s= 2.04 GeV  pf*=0.080 GeV 
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With error propagation, one can get: 
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Exercise 8 

 

a)   ( )
( )
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   : containing u ubar and d dbar 

  : s s sbar 

J/, (2S) : c cbar 

  : b bbar 

 
This result is an experimental evidence for the number of colours Nc =3. 
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Exercise 9  

(i)  →  0 

(ii) 0 →  0 

(iii) + →  + 

(iv) + →  0 + 
 
According to the PDG-booklet: IG (JPC) 

 (uu+dd): 0-(1--)      (uu+dd) :  0+(0-+) 

0 (uu-dd): 1-(0-+)     + (ud):  1-(0-) 

0 (uu-dd): 1+(1--)     + (ud):  1+(1-) 
 
a) For (i) and (ii) there is no conservation of the charge conjugation C, and therefore the 

reactions are forbidden via strong and electromagnetic interactions. They occur by 

weak interaction. 

b) In reactions (iii) and (iv) there is conservation of the electric charge, of the isospin I3 
and of the parity (with ℓ=1 between the final-state particles). The baryonic, leptonic 

and strangeness quantum numbers are equal to zero in the initial and final states of 
both reactions. Charge conjugation cannot be considered because the initial particles 

are charged. Hence, if we do not take into account the G-parity, these decays are 

possible via strong or electromagnetic interactions (strong interaction dominates). 
c) The two reactions have the same initial state, and therefore the ratio of branching 

fractions is simply the ratio of partial widths.  To estimate it without any hypothesis, 
one needs to take into account the matrix elements and the phase space factors.  
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Averaging the initial spin states has no effect. The final states are spin-0. This 
calculation is done under the suggested assumption that the matrix elements are 
identical, so finally only the phase-space factors are to consider. Note that in + →  + 

the phase space is smaller compared to the one in + → 0 +. 
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A better estimation of this ratio can be obtained by taking isospin into account. This 
makes sense only because we suppose here that the two reactions are due to strong 

interaction1. The isospin states are: 
|+> = |1,+1> ;       |> = |0,0> ;       |+> = |1,+1> ;       |0> = |1,0>, 

therefore: | +> = |1,+1> and |0 +> = |1,0>  |1,+1> = (|2,+1> - |1,+1>)/2. 

Under isospin conservation, the only allowed final state is |1,+1>. 
Using < +|Hint|+> = T1, we get: 
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1 Under this hypothesis, the identical matrix elements are isospin matrix elements. 
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The widths given in the PDG-booklet for these reactions are nonetheless different by a 
few orders of magnitude: (+ →  +) < 6 10-3 and (+ → 0 +)  1. This indicates 

without any doubt that the matrix elements differ for these two processes, which are 
therefore due to different interactions.  

d) ( 1)I

G C = −   , which gives  G(+)= +1, G()= +1, G(+)= -1, G(0)= -1. 

G is a multiplicative quantum number, hence G()=-1, G()=1.  

e) It is clear from this calculation that the G-parity is conserved in reaction (iv) but not in 
reaction (iii). Together with the other quantum number, this leads to the conclusion 

that (iii) and (iv) are due to electromagnetic and strong interactions, respectively. This 

explains the large differences in the branching ratios. The source of the wrong 
conclusions in question c is, of course, the fact that we did not take into account the 

G-parity, whose necessity is illustrated by this example. 

f)  
 

(i)   
 
 
 
 
 

(iii)   
 
 
 
 
 

(iv)   
 
 
 
 
 

g) The Strong-interaction lagrangian is invariant under isospin transformation. Consider a 

process that is forbidden by charge-conjugation violation. Other processes that may be 
obtained by isospin-space rotations of this forbidden process must be forbidden as well, 

at least by strong interaction. Note that this is true despite the fact that certain states 

and particles in the “rotated” processes are not necessarily eigenvalues of the charge 
conjugation operator (e.g. charged particles). The above description is, in fact, 

synonym of G-parity conservation. We stress that as isospin is not a symmetry with 
respect to the electromagnetic interaction, the latter does not conserve G-parity.   

 

 
Exercice 10 

a)  

The - are therefore the SU(3) generators for antiquarks. 
b) Antiquarks states in (I3, Y): corresponding eigenvalues of 

* *
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which is what we denoted as 3 bar. 

c) T2 already satisfies –T*
2 = T2 and therefore must commute with RI. As T1 and T3 are 

real, they verify 
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From these (anti-) commutation relations or by simple matrix products, it is easy to 

show that the given expression of RI works. 
d) The unitary matrix RI performs a change of basis: a matrix M transforms to the new 

basis as 
†

I IR MR  and a vector v as RI v. Thus, working with the matrices 

* †( )− =I i I iR T R T jointly with the vectors 
IR q is equivalent to working with the 

matrices 
*− iT and the vectors q . Physics results are basis independent. 

Mathematically: 

 

e) A simple matrix algebra: 
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( u  is the same as d , d  is the same as - u ). 

f) Observables do not depend on a particular basis, and here we illustrate this point for 

I3. In the new basis, I3 is computed as: 
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g) Quark-quark states can be simply obtained by copying the spin triplet and singlet. In 

terms of (
  
I , I

3
): 

  

1,1 = u,u , 1,0 =
u,d + d,u

2
, 1,-1 = d,d ; 0,0 =

u,d - d,u

2
 

h) From e) and f) above, to obtain the corresponding states made of a quark and an 
antiquark, we simply need to substitute, for the second particle of the composite 

system, 

  
u ®- d , d ® u . 

Thus, the analog isospin system writes: 

  

1,1 = - u,d , 1,0 =
u,u - d,d

2
, 1,-1 = d,u ; 0,0 =

u,u + d,d

2
. 
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