Correction Exercise sheet № 8 - Around the Z boson

1 Corrections for QED $e^{-} e^{+} \rightarrow f \bar{f}$

1. The matrix element can be written as

$$
\begin{align*}
i \mathcal{M} & =\bar{v}\left(k_{2}\right) i e Q_{e} \gamma^{\mu} u\left(k_{1}\right) \frac{-i}{q^{2}} \eta_{\mu \nu} \bar{u}\left(p_{1}\right) i e Q_{f} v\left(p_{2}\right) \\
& =Q_{e} Q_{f} \quad i \frac{e^{2}}{q^{2}} \bar{v}\left(k_{2}\right) \gamma^{\mu} u\left(k_{1}\right) \bar{u}\left(p_{1}\right) \gamma_{\mu} v\left(p_{2}\right) \tag{1}
\end{align*}
$$

2. From the matrix element, we get:

$$
\begin{align*}
\sum_{\text {spins }}|\mathcal{M}|^{2}= & \mathcal{M} \mathcal{M}^{\dagger} \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} \bar{v}\left(k_{2}\right) \gamma^{\mu} u\left(k_{1}\right) \bar{u}\left(k_{1}\right) \gamma^{\nu} v\left(k_{2}\right) \bar{u}\left(p_{1}\right) \gamma_{\mu} v\left(p_{2}\right) \bar{v}\left(p_{2}\right) \gamma_{\nu} u\left(p_{1}\right) \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} \operatorname{Tr}\left(\gamma^{\mu} \not \phi_{1} \gamma^{\nu} \not \phi_{2}\right) \operatorname{Tr}\left(\gamma_{\mu} \nmid p_{2} \gamma_{\nu} \not p_{1}\right) \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} 4\left(\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}-\eta^{\mu \nu} \eta^{\rho \sigma}\right) k_{1 \rho} k_{2 \sigma} \tag{2}\\
& \times 4\left(\eta_{\mu \rho^{\prime}} \eta_{\nu \sigma^{\prime}}+\eta_{\mu \sigma^{\prime}} \eta_{\nu \rho^{\prime}}-\eta_{\mu \nu} \eta_{\rho^{\prime} \sigma^{\prime}}\right) p_{1 \sigma^{\prime}} p_{2 \rho^{\prime}} \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} 16\left(k_{1}^{\mu} k_{2}^{\nu}+k_{1}^{\nu} k_{2}^{\mu}-\eta^{\mu \nu} k_{1} \cdot k_{2}\right)\left(p_{1 \mu} p_{2 \nu}+p_{1 \nu} p_{2 \mu}-\eta_{\mu \nu} p_{1} \cdot p_{2}\right) \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} 16\left(2 k_{1} \cdot p_{1} k_{2} \cdot p_{2}+2 k_{1} \cdot p_{2} k_{2} \cdot p_{1}-k_{1} \cdot k_{2} p_{1} \cdot p_{2}\left(4-\eta^{\mu \nu} \eta_{\mu \nu}\right)\right) \\
= & Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{q^{4}} 32\left(k_{1} \cdot p_{1} k_{2} \cdot p_{2}+k_{1} \cdot p_{2} k_{2} \cdot p_{1}\right),
\end{align*}
$$

where we used the fact that $\eta_{\mu \nu} \eta^{\mu \nu}=\eta_{\mu}^{\mu}=4$. The lab frame is the center of mass frame, therefore f and \bar{f} have the same momentum and assuming massless fermions: $p_{1} \equiv(E, E \sin \theta, 0, E \cos \theta)$, $p_{2} \equiv(E,-E \sin \theta, 0,-E \cos \theta)$ we also have $p_{f}^{*}=E=\sqrt{s} / 2$. Therefore

$$
\begin{align*}
& p_{1} \cdot k_{1}=E^{2}(1-\cos \theta) \\
& p_{1} \cdot k_{2}=E^{2}(1+\cos \theta) \\
& p_{2} \cdot k_{1}=E^{2}(1+\cos \theta) \tag{3}\\
& p_{2} \cdot k_{2}=E^{2}(1-\cos \theta)
\end{align*}
$$

giving

$$
\begin{align*}
\sum_{\text {spins }}|\mathcal{M}|^{2} & =Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{s^{2}} 32 E^{4}\left[(1-\cos \theta)^{2}+(1+\cos \theta)^{2}\right] \\
& =Q_{e}^{2} Q_{f}^{2} \frac{e^{4}}{s^{2}} 32 \frac{s^{2}}{16} 2\left(1+\cos ^{2} \theta\right) \tag{4}\\
& =Q_{e}^{2} Q_{f}^{2} \alpha^{2} 4(4 \pi)^{2}\left(1+\cos ^{2} \theta\right)
\end{align*}
$$

Therefore the final cross section is

$$
\begin{align*}
& \frac{d \sigma}{d \Omega}=\frac{\frac{1}{4} \sum_{\mathrm{spins}}|\mathcal{M}|^{2}}{64 \pi^{2} s} \times 1 \\
& \quad=Q_{e}^{2} Q_{f}^{2} \frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \tag{5}
\end{align*}
$$

3. Using the Wigner formalism, one find easily that:

- $d \sigma_{L L}=Q_{e}^{2} Q_{f}^{2} \mathcal{A}_{L L}(1+\cos \theta)^{2}$,
- $d \sigma_{R R}=Q_{e}^{2} Q_{f}^{2} \mathcal{A}_{R R}(1+\cos \theta)^{2}$,
- $d \sigma_{L R}=Q_{e}^{2} Q_{f}^{2} \mathcal{A}_{L R}(1-\cos \theta)^{2}$,
- $d \sigma_{R L}=Q_{e}^{2} Q_{f}^{2} \mathcal{A}_{R L}(1-\cos \theta)^{2}$

Because the EM interaction is symmetric under parity we find out that $d \sigma_{L L}=d \sigma_{R R}$ and $d \sigma_{R L}=d \sigma_{L R}$.
The total cross section can be written as:

$$
\begin{align*}
d \sigma & =Q_{e}^{2} Q_{f}^{2} \frac{1}{4}\left(d \sigma_{L L}+d \sigma_{R R}+d \sigma_{L R}+d \sigma_{R L}\right) \\
& =Q_{e}^{2} Q_{f}^{2} \frac{1}{2}\left(\mathcal{A}_{L L}(1+\cos \theta)^{2}+\mathcal{A}_{L R}(1-\cos \theta)^{2}\right) \tag{6}\\
& =Q_{e}^{2} Q_{f}^{2} \frac{1}{2}\left(\left(\mathcal{A}_{L L}+\mathcal{A}_{R L}\right)\left(1+\cos ^{2} \theta\right)+2 \cos \theta\left(\mathcal{A}_{L L}-\mathcal{A}_{R L}\right)\right)
\end{align*}
$$

We conclude to get the proper angular distribution that:

$$
\mathcal{A}_{L R}=\mathcal{A}_{R L}=\mathcal{A}_{R R}=\mathcal{A}_{L L} \equiv A=\frac{\alpha^{2} \pi}{2 s}
$$

4. The matrix element with P_{X} and P_{Y} is simply (remember that a L anti-fermion is the right chirality of the bi-spinor v so $f_{R} \bar{f}_{L}$ raises a term $P_{R} v\left(p_{2}\right)$ and Y correspond to the chirality of the f.

$$
\begin{align*}
i \mathcal{M}_{X Y} & =Q_{e} Q_{f} \quad i \frac{e^{2}}{q^{2}} \bar{v}\left(k_{2}\right) \gamma^{\mu} P_{X} u\left(k_{1}\right) \bar{u}\left(p_{1}\right) \gamma_{\mu} P_{Y} v\left(p_{2}\right) \tag{7}\\
& =Q_{e} Q_{f} \quad i \mathcal{M}_{X Y}^{E M}
\end{align*}
$$

2 Corrections for the \mathbf{Z} boson partial widths $\Gamma(Z \rightarrow f \bar{f})$

1. Diagram ok...
2. The matrix elements are given by

$$
\begin{align*}
& i \mathcal{M}_{L}=i \mathcal{A}_{L} \frac{g}{c_{w}}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right) \\
& i \mathcal{M}_{R}=i \mathcal{A}_{R} \frac{g}{c_{w}}\left(-Q_{f} s_{w}^{2}\right) \tag{8}
\end{align*}
$$

3. $\left|A_{L}\right|^{2}$ is given by, summing over the initial polarisation of the boson and final spins of the fermions.

$$
\begin{align*}
\left|\mathcal{A}_{L}\right|^{2} & =\sum_{\text {polar helicitieies }} \sum_{u} \bar{u}\left(p_{1}\right) \gamma^{\mu} \frac{1-\gamma_{5}}{2} v\left(p_{2}\right) \bar{v}\left(p_{2}\right) \gamma^{\nu} \frac{1-\gamma_{5}}{2} u\left(p_{1}\right) \epsilon_{\mu} \epsilon_{\nu}^{*} \tag{9}\\
& =\left(-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}}\right) \operatorname{Tr}\left(\left(\not p_{1}-m_{f}\right) \gamma^{\mu} \frac{1-\gamma_{5}}{2}\left(\not p_{2}+m_{f}\right) \gamma^{\nu} \frac{1-\gamma_{5}}{2}\right)
\end{align*}
$$

The term proportional to m_{f} are zero because the trace contains an odd number of γ 's. The term in m_{f}^{2} is proportional to $\operatorname{Tr}\left(\gamma^{\mu} \frac{1-\gamma_{5}}{2} \gamma^{\nu} \frac{1-\gamma_{5}}{2}\right)=\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \frac{1+\gamma_{5}}{2} \frac{1-\gamma_{5}}{2}\right)=0$ because $P_{R} P_{L}=0$. We are left with:

$$
\begin{align*}
\left|\mathcal{A}_{L}\right|^{2} & =\sum_{\text {polar helicities }} \sum_{\bar{u}}\left(p_{1}\right) \gamma^{\mu} \frac{1-\gamma_{5}}{2} v\left(p_{2}\right) \bar{v}\left(p_{2}\right) \gamma^{\nu} \frac{1-\gamma_{5}}{2} u\left(p_{1}\right) \epsilon_{\mu} \epsilon_{\nu}^{*} \\
& =\left(-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}}\right) \operatorname{Tr}\left(\not p_{1} \gamma^{\mu} \frac{1-\gamma_{5}}{2} \not p_{2} \gamma^{\nu} \frac{1-\gamma_{5}}{2}\right) \tag{10}\\
& =\left(-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}}\right) p_{1 \rho} p_{2 \sigma} \times \operatorname{Tr}\left(\gamma^{\rho} \gamma^{\mu} \gamma^{\sigma} \gamma^{\nu} \frac{1-\gamma_{5}}{2}\right) \\
& =\left(-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}}\right) p_{1 \rho} p_{2 \sigma} \times 2\left(\eta^{\mu \rho} \eta^{\sigma \nu}+\eta^{\mu \sigma} \eta^{\rho \nu}-\eta^{\rho \sigma} \eta^{\mu \nu}+i \epsilon^{\rho \mu \sigma \nu}\right)
\end{align*}
$$

where we used the traces expressions given in the introduction to the exercise. The terms corresponding to γ_{5} are proportional to $\epsilon^{\rho \mu \sigma \nu}$ (anti-symmetric under $\mu \nu$ exchange) which is multipled by a symmetric tensor in $\mu \nu$ and are therefore zero. This means that $\left|\mathcal{A}_{L}\right|^{2}=\left|\mathcal{A}_{R}\right|^{2}$. We pursue the computation:

$$
\begin{align*}
\left|\mathcal{A}_{L}\right|^{2} & =\left(-\eta_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{Z}^{2}}\right) 2\left(p_{1}^{\mu} p_{2}^{\nu}+p_{2}^{\mu} p_{1}^{\nu}-\eta^{\mu \nu} p_{1} \cdot p_{2}\right) \\
& =2\left(-2 p_{1} \cdot p_{2}+4 p_{1} \cdot p_{2}+2 \frac{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}{m_{Z}^{2}}+\frac{k^{2}}{m_{Z}^{2}} p_{1} \cdot p_{2}\right) \\
& =2\left(p_{1} \cdot p_{2}+2 \frac{\left(p_{1}^{2}+p_{1} \cdot p_{2}\right)\left(p_{2}^{2}+p_{1} \cdot p_{2}\right)}{m_{Z}^{2}}\right) \tag{11}\\
& =2 p_{1} \cdot p_{2}\left(1+\frac{2 p_{1} \cdot p_{2}}{m_{Z}^{2}}\right)
\end{align*}
$$

in the last line we have neglected the terms proportional to $p_{1}^{2}=p_{2}^{2}=m_{f}^{2}$ (assuming massless fermions). We also have used $k=p_{1}+p_{2}$ which implies that $k^{2}=m_{Z}^{2}=p_{1}^{2}+p_{2}^{2}+2 p_{1} \cdot p_{2}=2 p_{1} \cdot p_{2}$ again for $m_{f}=0$. Eventually, we get:

$$
\begin{equation*}
\left|\mathcal{A}_{L}\right|^{2}=\left|\mathcal{A}_{R}\right|^{2}=2 m_{Z}^{2} \tag{12}
\end{equation*}
$$

4. The matrix element being independent of the angle, we have directly $\Gamma=|\mathcal{M}|^{2} \frac{p_{f}^{*}}{8 \pi m_{Z}^{2}}$ since the integral over Ω gives a factor of 4π. Using the fact that $e=g s_{w}$, we have (averaging over the initial Z polarisations brings in a factor $1 / 3$, and noting the fine structure constant $\alpha=e^{2} / 4 \pi$):

$$
\begin{align*}
\Gamma_{L} & =\frac{1}{3}\left|\mathcal{A}_{L}\right|^{2} \frac{e^{2}}{s_{w}^{2} c_{w}^{2}}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2} \frac{m_{Z} / 2}{8 \pi m_{Z}^{2}} \\
\Gamma_{L} & =\frac{\alpha m_{Z}}{6 c_{w}^{2} s_{w}^{2}}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2} \tag{13}\\
\Gamma_{R} & =\frac{\alpha m_{Z}}{6 c_{w}^{2} s_{w}^{2}}\left(-Q_{f} s_{w}^{2}\right)^{2}
\end{align*}
$$

5. The total partial width is therefore given by

$$
\begin{equation*}
\Gamma=\Gamma_{L}+\Gamma_{R}=\frac{\alpha m_{Z}}{6 c_{w}^{2} s_{w}^{2}} \times\left[\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}+Q_{f}^{2} s_{w}^{4}\right] \times N_{c}(f) \tag{14}
\end{equation*}
$$

where $N_{c}(f)$ is a color factor that includes QCD corrections, it is 1 for leptons and $N_{c}(f)=$ $3\left(1+\alpha_{s} / \pi\right)$ for quarks. Using $\alpha_{s}\left(m_{Z}\right)=0.118, s_{w}^{2}=0.232$ and $m_{Z}=91.2 \mathrm{GeV}$, we find the partial widths and branching ratios in Tab. 1).
6. the Left-Right asymmetry is only given by the vertex factor since $\left|\mathcal{A}_{R}\right|=\left|\mathcal{A}_{L}\right|$, we have:

$$
\begin{equation*}
A_{L R}^{f}=\frac{\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}-Q_{f}^{2} s_{w}^{4}}{\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}+Q_{f}^{2} s_{w}^{4}} \tag{15}
\end{equation*}
$$

Propery	Theo. (tree level)	Measurement
Γ_{Z}	2.49 GeV	$2.4952 \pm 0.0023 \mathrm{GeV}$
$\mathcal{B}(Z \rightarrow \nu \bar{\nu})$	20.04%	$20.00 \pm 0.06 \%$
$\mathcal{B}(Z \rightarrow \ell)$	3.36%	$3.3658 \pm 0.0023 \%$
$\mathcal{B}(Z \rightarrow$ up - type $)$	11.9%	$11.6 \pm 0.6 \%$
$\mathcal{B}(Z \rightarrow$ down - type $)$	15.4%	$15.6 \pm 0.4 \%$

Table 1: Predictions (from this exercise) and measurements of different Z boson parameters

3 Correction for $\mathbf{Q E D}+$ Weak neutral currents $e^{-} e^{+} \rightarrow f \bar{f}$

1. Diagram...
2. We have only 4 cross-sections because the only couplings existing are $\bar{\psi}_{L} \gamma^{\mu} \psi_{L}$ and $\bar{\psi}_{R} \gamma^{\mu} \psi_{R}$ which is also true for pseudo-vector (axial) current. In this case the matrix elements can be written as:

$$
\begin{align*}
& i \mathcal{M}_{X Y}= \bar{v}\left(k_{2}\right) i e Q_{e} \gamma^{\mu} P_{X} u\left(k_{1}\right) \frac{-i}{q^{2}} \eta_{\mu \nu} \bar{u}\left(p_{1}\right) i e Q_{f} P_{Y} v\left(p_{2}\right) \\
&+\bar{v}\left(k_{2}\right) \frac{i e}{c_{w} s_{w}}\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right) \gamma^{\mu} P_{X} u\left(k_{1}\right) \\
& \times \frac{-i}{q^{2}-m_{Z}^{2}}\left(\eta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{m_{Z}^{2}}\right) \tag{16}\\
& \quad \times \bar{u}\left(p_{1}\right) \frac{i e}{c_{w} s_{w}}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right) P_{Y} v\left(p_{2}\right)
\end{align*}
$$

3. The terms in $\bar{v}\left(k_{2}\right) \gamma^{\mu} P_{X} u\left(k_{1}\right) q^{\mu}=0$ because

$$
\begin{align*}
\bar{v}\left(k_{2}\right) \gamma^{\mu} P_{X} u\left(k_{1}\right) q^{\mu} & =\bar{v}\left(k_{2}\right) \gamma^{\mu} \frac{1 \pm \gamma_{5}}{2} u\left(k_{1}\right)\left(k_{1}^{\mu}+k_{2}^{\mu}\right) \\
& =\bar{v}\left(k_{2}\right) \frac{1 \mp \gamma_{5}}{2} \not k_{1} u\left(k_{1}\right)+\bar{v}\left(k_{2}\right) \not \phi_{2} \frac{1 \pm \gamma_{5}}{2} u\left(k_{1}\right) \\
& =m_{e} \bar{v}\left(k_{2}\right) \frac{1 \mp \gamma_{5}}{2} u\left(k_{1}\right)-m_{e} \bar{v}\left(k_{2}\right) \frac{1 \pm \gamma_{5}}{2} u\left(k_{1}\right) \tag{17}\\
& =\mp m_{e} \bar{v}\left(k_{2}\right) \gamma_{5} u\left(k_{1}\right) \\
& =\epsilon_{X} m_{e} \bar{v}\left(k_{5}\right) \gamma_{5} u\left(k_{1}\right)
\end{align*}
$$

with $\epsilon_{L}=+1$ and $\epsilon_{R}=-1$. So the terms in $q_{\mu} q_{\nu} / m_{Z}^{2} \propto \frac{m_{e} m_{f}}{m_{Z}^{2}} \ll 1$ can be neglected.
4. The form or the matrix element from the question is straightforward after removal of the terms $q^{\mu} q^{\nu}$. Indeed Eq. 16 becomes:

$$
\begin{align*}
i \mathcal{M}_{X Y} & =(i e)^{2} \bar{v}\left(k_{2}\right) \gamma^{\mu} P_{X} u\left(k_{1}\right) \frac{-i}{q^{2}} \eta_{\mu \nu} \bar{u}\left(p_{1}\right) P_{Y} v\left(p_{2}\right) \\
& \times\left(Q_{e} Q_{f}+\frac{\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)}{c_{w}^{2} s_{w}^{2}} \frac{q^{2}}{q^{2}-m_{Z}^{2}}\right) \tag{18}\\
& =i \mathcal{M}_{X Y}^{E M} \times\left(Q_{e} Q_{f}+\frac{\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)}{c_{w}^{2} s_{w}^{2}} \frac{q^{2}}{q^{2}-m_{Z}^{2}}\right)
\end{align*}
$$

5. We find the different partial cross sections from the QED result, indeed

$$
\begin{array}{r}
\frac{d \sigma_{X Y}}{d \cos \theta}=\frac{1}{F l u x}\left|\mathcal{M}_{X Y}^{E M}\right|^{2} d \Phi_{2} \times\left|F_{X Y}(f)\right|^{2} \\
\quad \frac{d \sigma_{X Y}}{d \cos \theta}=\frac{1}{Q_{e}^{2} Q_{f}^{2}} \frac{d \sigma_{X Y}^{E M}}{d \cos \theta} \times\left|F_{X Y}(f)\right|^{2} \tag{19}
\end{array}
$$

6. The total cross section is the averaged sum of the polarised ones

$$
\begin{align*}
\sigma_{t o t} & =\frac{1}{4} \frac{\pi \alpha^{2}}{2 s} \int_{-1}^{1} d \cos \theta\left(\left(\left|F_{L R}\right|^{2}+\left|F_{L R}\right|^{2}\right)(1-\cos \theta)^{2}+\left(\left|F_{R R}\right|^{2}+\left|F_{L L}\right|^{2}\right)(1+\cos \theta)^{2}\right) \tag{20}\\
& =\frac{\pi \alpha^{2}}{3 s}\left(\left|F_{L R}\right|^{2}+\left|F_{L R}\right|^{2}+\left|F_{L L}\right|^{2}+\left|F_{R R}\right|^{2}\right)
\end{align*}
$$

7. The $F_{X Y}$ can be written as $F_{X Y}=-Q_{f}+A_{X Y} \frac{s}{s-m_{Z}^{2}+i \Gamma_{Z} m_{Z}}$ with $A_{X Y}=\frac{\left(T_{3}^{e}+s_{w}^{2}\right)\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)}{c_{w}^{s} s_{w}^{2}}$ which gives:

$$
\begin{equation*}
\left|F_{X Y}\right|^{2}=Q_{f}^{2}+A_{X Y}^{2} \frac{s^{2}}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}-Q_{f} A_{X Y} \frac{s\left(s-m_{Z}^{2}\right)}{\left(s-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}} \tag{21}
\end{equation*}
$$

The interference term $A_{X Y} Q_{f}$ is nul at the Z pole ($s=m_{Z}^{2}$), the typical ratio between the EM contribution and the Z contribution is given by:

$$
\begin{equation*}
\left.\frac{\sigma_{E M}}{\sigma_{Z}}\right|_{\sqrt{s}=m_{Z}}=\frac{Q_{f}^{2}}{A_{X Y}^{2}} \frac{\Gamma_{Z}^{2}}{m_{Z}^{2}} \approx \frac{\Gamma_{Z}^{2}}{m_{Z}^{2}} \approx \frac{1}{1000} \tag{22}
\end{equation*}
$$

In fact for the muon for example:

$$
\begin{equation*}
\left.\frac{\sigma_{Z}}{\sigma_{E M}}\right|_{\sqrt{s}=m_{Z}}=\frac{2\left(1 / 2-s_{w}^{2}\right)^{2}+s_{w}^{4}+\left(1 / 2-s_{w}^{2}\right)^{4} / s_{w}^{4}}{4 c_{w}^{2}} \approx 170 \tag{23}
\end{equation*}
$$

8. For the LR asymmetry, Γ_{L} and Γ_{R} have the same flux and phase space factor, the matrix element are very similar but differ only by the vertex factor hence (see the exercise on the Z boson width for the full proof):

$$
\begin{equation*}
A_{L R}^{f}=\frac{\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}-Q_{f}^{2} s_{w}^{4}}{\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}+Q_{f}^{2} s_{w}^{4}} \tag{24}
\end{equation*}
$$

9. For the forward and backward cross section, we first needs the integrals:

$$
\begin{array}{ll}
\int_{0}^{1} d \cos \theta(1-\cos \theta)^{2} & =\frac{1}{3} \\
\int_{-1}^{0} d \cos \theta(1-\cos \theta)^{2} & =\frac{7}{3} \tag{25}
\end{array} \quad \int_{-1}^{1} d \cos \theta(1+\cos \theta)^{2}=\frac{7}{3} \theta(1+\cos \theta)^{2}=\frac{1}{3}
$$

which gives (remember $\frac{1}{4}$ is for the average over the initial polarisation):

$$
\begin{align*}
\sigma_{F} & =\frac{1}{4} \frac{\pi \alpha^{2}}{2 s} \int_{0}^{1} d \cos \theta\left[\left(\left|F_{L R}(f)\right|^{2}+\left|F_{R L}(f)\right|^{2}\right)(1-\cos \theta)^{2}+\left(\left|F_{L L}(f)\right|^{2}+\left|F_{R R}(f)\right|^{2}\right)(1+\cos \theta)^{2}\right] \\
& =\frac{1}{4} \frac{\pi \alpha^{2}}{2 s}\left[\left(\left|F_{L R}(f)\right|^{2}+\left|F_{R L}(f)\right|^{2}\right) \frac{1}{3}+\left(\left|F_{L L}(f)\right|^{2}+\left|F_{R R}(f)\right|^{2}\right) \frac{7}{3}\right] \\
\sigma_{B} & =\frac{1}{4} \frac{\pi \alpha^{2}}{2 s}\left[\left(\left|F_{L R}(f)\right|^{2}+\left|F_{R L}(f)\right|^{2}\right) \frac{7}{3}+\left(\left|F_{L L}(f)\right|^{2}+\left|F_{R R}(f)\right|^{2}\right) \frac{1}{3}\right] \tag{26}
\end{align*}
$$

10. The forward-backward asymmetry is thus:

$$
\begin{equation*}
A_{F B}=\frac{3}{4} \frac{\left|F_{L L}(f)\right|^{2}+\left|F_{R R}(f)\right|^{2}-\left|F_{L R}(f)\right|^{2}-\left|F_{R L}(f)\right|^{2}}{\left|F_{L L}(f)\right|^{2}+\left|F_{R R}(f)\right|^{2}+\left|F_{L R}(f)\right|^{2}+\left|F_{R L}(f)\right|^{2}} \tag{27}
\end{equation*}
$$

11. At the Z pole, the EM contribution is negligible, we are left with the vertex number:

$$
\begin{equation*}
A_{F B}^{0}=\frac{3}{4} \frac{Q_{e}^{2} s_{w}^{4} Q_{f}^{2} s_{w}^{4}+\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)^{2}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}-\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)^{2} Q_{f}^{2} s_{w}^{4}-\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2} Q_{e}^{2} s_{w}^{4}}{Q_{e}^{2} s_{w}^{4} Q_{f}^{2} s_{w}^{4}+\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)^{2}\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2}+\left(T_{3}^{e}-Q_{e} s_{w}^{2}\right)^{2} Q_{f}^{2} s_{w}^{4}+\left(T_{3}^{f}-Q_{f} s_{w}^{2}\right)^{2} Q_{e}^{2} s_{w}^{4}} \tag{28}
\end{equation*}
$$

which is precisely

$$
\begin{equation*}
A_{F B}^{0}=\frac{3}{4} \quad A_{L R}^{e} A_{L R}^{f} \tag{29}
\end{equation*}
$$

12. $A_{F B}^{0}$ does only depend on s_{w}^{2}, so it is indeed a measurement of the Weinberg angle.
13. In the SM, we find the values for leptons up-type quarks and down-type quarks, using $s_{w}^{2}=0.23$:

$$
\begin{align*}
A_{L R}^{\ell} & =\frac{\left(-1 / 2+s_{w}^{2}\right)^{2}-s_{w}^{4}}{\left(-1 / 2+s_{w}^{2}\right)^{2}+s_{w}^{4}}=0.159 \\
A_{L R}^{u} & =\frac{\left(1 / 2-2 / 3 s_{w}^{2}\right)^{2}-4 / 9 s_{w}^{4}}{\left(1 / 2-2 / 3 s_{w}^{2}\right)^{2}+4 / 9 s_{w}^{4}}=0.672 \tag{30}\\
A_{L R}^{d} & =\frac{\left(-1 / 2+1 / 3 s_{w}^{2}\right)^{2}-1 / 9 s_{w}^{4}}{\left(-1 / 2+1 / 3 s_{w}^{2}\right)^{2}+1 / 9 s_{w}^{4}}=0.934
\end{align*}
$$

which gives the forward-backward results in Tab. 2

Propery	Theo. (tree level)	Measurement		
f	$A_{L R}^{f}$	$A_{F B}^{f}$ (pred. $\left.s_{w}^{2}=0.23\right)$	$A_{F B}^{f}$ (pred. $\left.s_{w}^{2}=0.232\right)$	Meas.
$f \equiv \ell$	0.159	0.019	0.0154	0.0171 ± 0.0010
$f \equiv u$	0.672	0.080	0.0715	0.0699 ± 0.0036
$f \equiv d$	0.934	0.1110	0.1004	0.1000 ± 0.0017

Table 2: Predictions (with 2 values of s_{w}^{2}) and measurements of different asymmetries.

