Spinor algebra

The Dirac matrices are defined in terms of the basic property :

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbf{1}_{4} \tag{1}
\end{equation*}
$$

where $g_{\mu \nu}$ is the Minkowski metric $\operatorname{diag}(1,-1-1-1)$ and $\mathbf{1}_{4}$ is the identity matrix.
A basis for positive and negative frequency solutions of the Dirac equation is given by :

$$
\begin{equation*}
u^{s}(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi^{s}}{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi^{s}}, \quad v^{s}(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi^{s}}{-\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi^{s}}, \quad s=1,2 \tag{2}
\end{equation*}
$$

where ξ^{s} are the two-component spinors

$$
\xi^{1}=\binom{1}{0} \quad \xi^{2}=\binom{0}{1}
$$

In the expressions (2)

$$
\sigma^{\mu}=\left(\mathbf{1}_{2}, \sigma^{i}\right), \quad \bar{\sigma}^{\mu}=\left(\mathbf{1}_{2},-\sigma^{i}\right)
$$

where σ^{i} are the Pauli matrices.

1 Traces of γ matrices

1. Without using the explicit representation of the γ-matrices, but only equation (1), show that

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu} \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)
\end{aligned}
$$

where the trace is over the spinor indices.
2. Deduce expressions for $\operatorname{Tr}(\phi \not \phi)$ and $\operatorname{Tr}(\phi \not \phi \not \phi \not \phi)$, where a_{μ}, b_{μ} etc. are 4-vectors.
3. Show that $\operatorname{Tr}\left(\gamma^{\mu}\right)=0$

2 Spin sums

In what follows, $\alpha, \beta \ldots$ are spinor indices, and run from 1 to $4, s, s^{\prime} \ldots$ run over the polarisation $(1,2)$.

1. Show that

$$
\bar{u}^{s}(p) u^{s^{\prime}}(p)=2 m \delta^{s s^{\prime}}, \quad \bar{v}^{s}(p) v^{s^{\prime}}(p)=-2 m \delta^{s s^{\prime}}, \quad \bar{v}^{s}(p) u^{s^{\prime}}(p)=\bar{u}^{s}(p) v^{s^{\prime}}(p)=0
$$

2. Show that

$$
\bar{u}^{s}(p) \gamma^{\mu} u^{s^{\prime}}(p)=2 \delta^{s s^{\prime}} p^{\mu}
$$

3. Show that

$$
\sum_{s=1}^{2} u_{\alpha}^{s}(p) \bar{u}_{\beta}^{s}(p)=\not p_{\alpha \beta}+m \delta_{\alpha \beta}, \quad \sum_{s=1}^{2} v_{\alpha}^{s}(p) \bar{v}_{\beta}^{s}(p)=\not p_{\alpha \beta}-m \delta_{\alpha \beta}
$$

Notice that in excerices 1 and 2 spinor indices are contracted, while in excercise 3 they are not.

