
M2 NPAC 2022/2023

QFT - part 2 problem set n̊ 2

Interacting field theories and the S-matrix

1 Dimensional Analysis

1. Consider a theory with one scalar field φ and one Dirac spinor ψ.
a) Find the dimension of the coupling constants of the following interactions :

g φψψ , GF ψψ ψψ

b) Is each of the interactions above relevant, marginal, or irrelevant ? For the irrele-
vant ones, what is the energy scale at which perturbation theory breaks down ?

c) Write all possible interactions up to dimension six compatible with Lorentz inva-
riance and parity.

2. In Einstein’s theory of gravitation, the coupling constant is the same as Newton’s
gravitational constant GN (in S.I. units : GN = 6.7 10−11m3Kg−1s−2).
a) Find the dimension of GN in natural units. Is this coupling relevant or irrelevant ?
b) If the latter is true, find the value (in GeV) of corresponding strong coupling

energy scale.

2 Dyson’s equation

This problem completes the derivations which were left out of the Jan 3 lecture.

We denote |ψ〉S and |ψ〉I a quantum state in the Schrödinger and Interaction picture,
respectively. They are related by

|ψ(t)〉I = eiH0t|ψ(t)〉S

where the Schrödinger picture Hamiltonian is H = H0 + Hint, and H0 is the Hamiltonian
of the free theory.

Similarlty, operators in the Schrödinger and Interaction pictures are related by :

OI(t) = eiH0tOSe
−iH0t

Recall that Schrödinger picture states satisfy the full Schrödinger equation :

i
d

dt
|ψ(t)〉S = (H0 +Hint)|ψ(t)〉S

and that Schrödinger picture operators are time-independent.
We denote by UI(t, t0) the interaction-picture time-evolution operator, defined by the

formula :
|ψ(t)〉I = UI(t, t0)|ψ(t0)〉I

.

1. Show that the evolution equation in the interaction picture takes the form

i
d

dt
|ψ〉I = HI |ψ〉I (1)

where HI(t) = eiH0tHinte
−iH0t.
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2. Show that, given any two states |i(t)〉 and |f(t)〉, their scalar product is independent
of the representation, i.e. :

S〈f(t)|i(t)〉S = I〈f(t)|i(t)〉I

3. S-matrix elements are defined in the Schrödinger picture by

S〈f(t = +∞)|i(t = +∞)〉S =S〈f(t = +∞)|S|i(t = −∞)〉S

where the S-operator on the r.h.s. is the full time-evolution operator :

S = U(+∞,−∞), U(t2, t1) ≡ e−iH(t2−t1).

Show that, going to the interaction picture, one obtains :

S〈f(t = +∞)|i(t = +∞)〉S = 〈f |SI |i〉

with the S-operator in the interaction picture given by

SI = UI(+∞,−∞),

In the equations above, we assume that interactions are switched off as t → + ±∞
(therfore the Interaction-picture states become time-independent Heisenberg picture
states of the free theory, denoted simply by |i〉 and |f〉).

4. Using equation (1), show that the operator evolution equation (with respect to t) for
UI(t, t0) is :

i
d

dt
UI(t, t0) = HI(t)UI(t, t0).

5. Show that the solution is given by

UI(t, t0) = T exp

(
−i
∫ t

t0

dt′HI(t
′)

)
(Dyson’s equation) (2)

where T denotes time-ordering of operator products,

TO(t1)O(t2) ≡
{
O(t1)O(t2) t1 > t2
O(t2)O(t1) t1 < t2

3 Phase space element in relativistic collisions

This exercise generalizes the expression for the cross-section seen in class to the relati-
vistic case. You can skip it at first and go straight to ex. 4, as the expression needed are
summarized there.

The differential cross section in a two-particle to two-particle collision with incoming
momenta ~p1, ~p2 and outgoing momenta ~p3, ~p4 is given by

dσ =
1

TF
dP (3)

where T is the duration of the experiment, F is the incoming flux,

F =
1

V
|~v2 − ~v1|
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(where we assumed the wave-functions are normalised to 1, i.e. 1 particle per volume V ),
and dP is the differential scattering probability given by 1

dP =

∫
~p3→dΩ

|〈~p3, ~p4|S − 1|~p1, ~p2〉|2

〈~p1, ~p2|~p1, ~p2〉〈~p3, ~p4|~p3, ~p4〉
dΠ3dΠ4 (4)

where dΠ3,4 are the phase-space elements of the final states,

dΠ = n~p d
3p (5)

( where n~p is the momentum density of states) and the integral is over the final states such
that one of the particles reaches the detector in a given solid angle element dΩ.

Recall the normalisation condition

〈~p|~q〉 = (2π)32ω~pδ
(3)(~p− ~q), (6)

and the identyties (in finite space-time volume V, T)

(2π)3δ(3)(~p = 0) = V, 2πδ(p0 = 0) = T, (7)

to regularise the delta-functions at zero. Also, remember that the total number of particles
with a given momentum ~p is

N = 〈~p|~p〉 (8)

and that the density of 1-particle states n~p can be obtained by writing the completeness
relation of the identity operator times N :

N 1 =

∫
d3p n~p|~p〉〈~p| (9)

1. Show that the differential cross section can be written as

dσ =
1

4E1E2|
1

|~v1 − ~v2|

∫
~p3→dΩ

|Ai→f |2dΠLIPS , (10)

where the amplitude Ai→f is defined by extracting a momentum-conservation delta-
function from the S- matrix element 2,

〈f |S − 1|i〉 = Ai→f (2π)4δ(4)
(∑

pf −
∑

pi

)
, (11)

and the Lorentz Invariant Phase Space element is given by :

ΠLIPS = (2π)4δ(4)(p3 + p4 − p1 − p2)
d3p3

(2π)32ωp3

d3p4

(2π)32ωp4
(12)

2. For a collision in the center of mass frame, and when all particles have the same
mass show that, by performing the integral over the particle 3 and 4 momenta (such
that at least one particle is detected in the solid angle dΩ) and by using relativistic
kinematics (i.e. p2 = m2 for all 4-momenta) one obtains :

dσ

dΩ
=

1

64π2

|Ai→f |2

E2
CM

(13)

where ECM is the total center-of-mass energy of the collision.

1. We subtract the identity to eliminate the process where no interaction occurs.
2. It is customary to subtract the identity from S. If the initial and final states are not the same, this

does not make any difference.
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4 Two-particle scattering in φ4 theory

Recall that for relativistic scattering, the differential cross section can be written as

dσ =
1

4E1E2|
1

|~v1 − ~v2|

∫
~p3→dΩ

|Ai→f |2dΠLIPS , (14)

where the amplitude Ai→f is defined by extracting a momentum-conservation delta-function
from the S- matrix element,

〈f |S − 1|i〉 = Ai→f (2π)4δ(4)
(∑

pf −
∑

pi

)
, (15)

and the Lorentz Invariant Phase Space element is given by :

ΠLIPS = (2π)4δ(4)(p3 + p4 − p1 − p2)
d3p3

(2π)32ωp3

d3p4

(2π)32ωp4
(16)

Finally, recall that for a collision in the center of mass frame, and when all particles have
the same mass, one obtains :

dσ

dΩ
=

1

64π2

|Ai→f |2

E2
CM

(17)

where ECM is the total center-of-mass energy of the collision.

4.1 Warm up : one-dimensional harmonic oscillator

Consider a non-relativistic quantum harmonic oscillator with Hamiltonian

H =
1

2
mω2x2 +

1

2m
p2 = ω

(
a†a+

1

2

)
with

x =
1√

2mω
(a+ a†), p =

√
mω

2
i(a− a†), [a, a†] = 1

and eigenstates |n〉 satisfying

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉 (a|0〉 = 0).

1. Compute the expectation values

〈0|x2|0〉, 〈0|x4|0〉

2. Compute the matrix element
〈0|x4|2〉

4.2 2→ 2 S-Matrix element in φ4 theory

We now consider φ4 theory, with Lagrangian density

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 − λ

4!
φ4
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1. Compute the S-matrix element for 2→ 2 scattering, to the lowest-order in λ,

〈p′1, p′2|S − 1|p1, p2〉.

Recall Dyson’s formula for the S-matrix :

S = T exp

(
−i
∫
dtHI(t)

)
(18)

as well as the free field mode expansion in terms of creation and annihilation opera-
tors,

φ(x) = φ+(x)+φ−(x), φ+(x) ≡
∫

d3p

(2π)3
√

2ωp
a~p e

−ipx, φ−(x) =

∫
d3p

(2π)3
√

2ωp
a†~p e

ipx,

and the commutation relation

[a~p, a
†
~q] = (2π)3δ(3)(~p− ~q).

2. Verify that the result found above has the form (15), and give the scattering amplitude
Ai→f to lowest order in λ.

3. Using (17), obtain the differential cross-section for 2 → 2 scattering in φ4 theory in
the center-of-mass frame for the incoming particles.

Congratulations ! You have just computed your first QFT observable.
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