Green's functions and propagators

Useful formulae

1. Dirac delta :

$$
\int_{-\infty}^{+\infty} d y e^{i y z}=2 \pi \delta(z) ; \quad \frac{d}{d z} \theta(z)=\delta(z)
$$

2. Cauchy's theorem :

$$
\oint d z \frac{f(z)}{z-w}=2 n \pi i f(w)
$$

where n is the number of times the integration contour goes around w counterclockwise.
3. Oscillator expansion of a free Klein-Gordon real scalar field operator with mass m :

$$
\hat{\phi}(x)=\int \frac{d^{3} p}{(2 \pi)^{3} \sqrt{2 \omega_{\vec{p}}}}\left[\hat{a}_{\vec{p}} e^{-i\left(\omega_{\vec{p}} t-\vec{p} \cdot \vec{x}\right)}+\hat{a}_{\vec{p}}^{\dagger} e^{i\left(\omega_{\vec{p}} t-\vec{p} \cdot \vec{x}\right)}\right]
$$

where x is shorthand for the four-vector $x^{\mu} \equiv(t, \vec{x})$ and

$$
\omega_{\vec{p}} \equiv \sqrt{|\vec{p}|^{2}+m^{2}}
$$

The creation-annihilation operators satisfy the commutation rule :

$$
\left[\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q}) \hat{\mathbf{1}}
$$

1. KG equation coupled to an external source

Consider the equation for a real scalar field with an external source :

$$
\begin{equation*}
\left(\square+m^{2}\right) \phi(\vec{x}, t)=J(\vec{x}, t) \tag{1}
\end{equation*}
$$

1. Assuming there is an instant t_{0} such that $J\left(\vec{x}, t<t_{0}\right)=0$, write, in terms of an appropriate Green's function, the solution $\phi(\vec{x}, t)$ which satisfies $\phi\left(\vec{x}, t<t_{0}\right)=0$. Which is the correctn Green's function in this case?
2. Find the explicit solution $\phi(\vec{x}, t)$ in the particular case :

$$
J(\vec{x}, t)=j_{0} \theta(t) e^{-\mu t}, \quad j_{0}, \mu>0, \quad \theta(t)= \begin{cases}1 & t \geq 0 \tag{2}\\ 0 & t<0\end{cases}
$$

3. Recall the solution for the classical Klein-Gordon (1) in the absence of sources :

$$
\begin{equation*}
\phi(\vec{x}, t)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 \omega_{k}}}\left(a(\vec{k}) e^{i \vec{k} \cdot \vec{x}-i \omega_{k} t}+a^{*}(\vec{k}) e^{-i \vec{k} \cdot \vec{x}+i \omega_{k} t}\right) \tag{3}
\end{equation*}
$$

where $\omega_{k} \equiv \sqrt{\vec{k}^{2}+m^{2}}$. Show that, for $t \rightarrow \infty$, the solution found in the previous point reduces to a solution of the free equation with coefficients :

$$
\begin{equation*}
a(\vec{k})=-\frac{(2 \pi)^{3} j_{0}}{(m+i \mu) \sqrt{2 m}} \delta^{3}(\vec{k}) \tag{4}
\end{equation*}
$$

2. Green's function for Helmoltz equation

Consider the following static equation in $\mathrm{d}=3$ space dimensions (no time) :

$$
\begin{equation*}
\left(-\nabla^{2}+m^{2}\right) \phi(\vec{x})=0 \tag{5}
\end{equation*}
$$

where $\phi(\vec{x})$ is a scalar field (with respect rotations in 3d). We want to construct the associated Green's function, $G(\vec{x})$, i.e. the solution of

$$
\begin{equation*}
\left(-\nabla^{2}+m^{2}\right) G(\vec{x})=\delta^{(3)}(\vec{x}) . \tag{6}
\end{equation*}
$$

1. Writing equation (6) in Fourier space, show that:

$$
\begin{equation*}
G(\vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \vec{k} \cdot \vec{x}}}{k^{2}+m^{2}} \tag{7}
\end{equation*}
$$

Is the Green's function unique? Do we need to go through the contour-deforming procedure in this case? Why is that the case?
2. Perform the 3 d momentum integral explicitly and show that:

$$
\begin{equation*}
G(\vec{x})=\frac{e^{-m|\vec{x}|}}{4 \pi|\vec{x}|} \tag{8}
\end{equation*}
$$

[Hint : choose spherical coordinate *wisely*, then perform the integral over angles, then use a contour integral for the final integration over $|\vec{k}|$.]

3. Propagators, Wightman Functions and Green functions

We define the functions $D_{ \pm}$(called the positive and negative frequency Wightman functions) by :

$$
D_{ \pm}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{\mp i\left(\omega_{p} t-\vec{p} \cdot \vec{x}\right)}}{2 \omega_{p}}
$$

where $\omega_{p}=\sqrt{|\vec{p}|^{2}+m^{2}}$. They have the equivalent expressions in terms of 4 d integrals :

$$
\begin{equation*}
D_{ \pm}=i \oint_{C_{ \pm}} \frac{d \omega}{2 \pi} \int \frac{d^{3} p}{2 \pi^{3}} \frac{e^{-i(\omega t-\vec{p} \cdot \vec{x})}}{p^{2}-m^{2}} \quad p^{2} \equiv \omega^{2}-|\vec{p}|^{2} \tag{9}
\end{equation*}
$$

where $C_{ \pm}$are close contours around $\pm \omega_{p}$, respectively. We also have the relations:

$$
\begin{equation*}
G_{F}(x)=G_{A}(x)+i D_{+}(x), \quad \text { and } \quad G_{F}(x)=G_{R}(x)+i D_{-}(x) \tag{10}
\end{equation*}
$$

where G_{A} and G_{R} are the advanced and retarded Green's functions. It follows that:

$$
\begin{equation*}
G_{F}\left(x-x^{\prime}\right)=i\left(\theta\left(t-t^{\prime}\right) D_{+}\left(x-x^{\prime}\right)+\theta\left(t^{\prime}-t\right) D_{-}\left(x-x^{\prime}\right)\right) . \tag{11}
\end{equation*}
$$

1. Using the oscillator expansion of the scalar field operators given on page 1 , show by explicit calculation that

$$
\begin{equation*}
\langle 0| \hat{\phi}(x) \hat{\phi}\left(x^{\prime}\right)|0\rangle=D_{+}\left(x-x^{\prime}\right) \tag{12}
\end{equation*}
$$

Then use equations (11) and (12) to obtain :

$$
\Delta_{F}\left(x-x^{\prime}\right) \equiv-i G_{F}\left(x-x^{\prime}\right)=\langle 0| T\left(\hat{\phi}(x) \hat{\phi}\left(x^{\prime}\right)\right)|0\rangle .
$$

where T denotes time-ordering.
This gives the fundamental result that the Feynman Green's function coincides with the time-ordered two-point correlator.
2. Similarly, show that

$$
\begin{equation*}
G_{R}\left(x, x^{\prime}\right)=i \theta\left(t-t^{\prime}\right)\langle 0|\left[\hat{\phi}(x), \hat{\phi}\left(x^{\prime}\right)\right]|0\rangle . \tag{13}
\end{equation*}
$$

and give a similar expression for $G_{A}\left(x, x^{\prime}\right)$.
3. Show that the Fourier transform (defined below) of Feynman's propagator has the following expression :

$$
\begin{equation*}
\tilde{\Delta}_{F}\left(p_{1}, p_{2}\right) \equiv \int d^{4} x_{1} d^{4} x_{2} e^{-i p_{1} x_{1}} e^{-i p_{1} x_{1}} \Delta_{F}\left(x_{1}-x_{2}\right)=(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}\right) \Delta_{F}\left(p_{1}\right) \tag{14}
\end{equation*}
$$

where we have defined :

$$
\begin{equation*}
\Delta_{F}(p) \equiv \frac{i}{p^{2}-m^{2}+i \epsilon} \tag{15}
\end{equation*}
$$

4. Given a 4 -point function $\Delta\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, we define its momentum space expression :

$$
\begin{equation*}
\tilde{\Delta}_{F}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \equiv \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} d^{4} x_{4} e^{-i p_{1} x_{1}} e^{-i p_{1} x_{1}} e^{-i p_{3} x_{3}} e^{-i p_{4} x_{4}} \Delta\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{16}
\end{equation*}
$$

Give the position space expressions, then the momentum-space expressions of the 4 -point diagrams in figure 1 (forget symmetry factors) :
In particular, make the momentum-conservation δ-functions explicit.

4. Wick's theorem

1. Given the relation

$$
\begin{equation*}
T \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right)=: \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right):+\Delta_{F}\left(x_{1}-x_{2}\right) \hat{\mathbf{1}}, \tag{17}
\end{equation*}
$$

use it to prove Wick's theorem for the product of 3 fields and for that of 4 fields.
2. Prove Wick's theorem by induction :

$$
T \hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right)=: \hat{\phi}\left(x_{1}\right) \ldots \hat{\phi}\left(x_{n}\right):+\sum: \text { all possible contractions : }
$$

Fig. 1 (ex. 3.4)

