M2 NPAC 2022,/2023
QFT - part 2 problem set n°3

Green’s functions and propagators

Useful formulae
1. Dirac delta :
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2. Cauchy’s theorem :
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where n is the number of times the integration contour goes around w counter-
clockwise.

3. Oscillator expansion of a free Klein-Gordon real scalar field operator with mass m :
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where z is shorthand for the four-vector z* = (¢, %) and

wy = /|2 + m2.

The creation-annihilation operators satisfy the commutation rule :
(5. at] = (2m)%6) (7 - 1.

1. KG equation coupled to an external source

Consider the equation for a real scalar field with an external source :
(O +m?)p(Z,t) = J(Z,1). (1)

1. Assuming there is an instant ¢y such that J(Z,t < to) = 0, write, in terms of an
appropriate Green’s function, the solution ¢(Z,t) which satisfies ¢(Z,t < tp) = 0.
Which is the correctn Green’s function in this case ?

2. Find the explicit solution ¢(Z,t) in the particular case :
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3. Recall the solution for the classical Klein-Gordon (1) in the absence of sources :
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where wy, = Vk2 +m2. Show that, for ¢ — oo, the solution found in the previous
point reduces to a solution of the free equation with coefficients :
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2. Green’s function for Helmoltz equation
Consider the following static equation in d=3 space dimensions (no time) :
(=V? +m?)¢(7) = 0 (5)

where ¢(Z) is a scalar field (with respect rotations in 3d). We want to construct the associated
Green’s function, G(Z), i.e. the solution of

(=V2 4+ m?)G(z) = 64 (2). (6)

1. Writing equation (6) in Fourier space, show that :
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Is the Green’s function unique? Do we need to go through the contour-deforming
procedure in this case 7 Why is that the case?

2. Perform the 3d momentum integral explicitly and show that :

efm|5:‘\
e a— ®

47| Z|

[Hint : choose spherical coordinate *wisely*, then perform the integral over angles,
then use a contour integral for the final integration over |k|. |

3. Propagators, Wightman Functions and Green functions

We define the functions D (called the positive and negative frequency Wightman func-

tions) by :
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where w, = 1/|p]? + m?. They have the equivalent expressions in terms of 4d integrals :
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where C'1 are close contours around +w,, respectively. We also have the relations :
Gr(z) = Ga(x) +iDi(x), and  Gp(z) = Ggr(z) +iD_(x) (10)
where G 4 and Gy are the advanced and retarded Green’s functions. It follows that :
Grlz —a') = i(@(t —#)Dy(x — ')+ 0 —t)D_(z — z’)). (11)

1. Using the oscillator expansion of the scalar field operators given on page 1, show by
explicit calculation that

(01é(2)$(2)|0) = D+ (z — ') (12)
Then use equations (11) and (12) to obtain :
Ap(z —2') = —iGp(z —2') = <0|T<<27($)¢A5(x/)) |0).

where T denotes time-ordering.
This gives the fundamental result that the Feynman Green’s function coincides with
the time-ordered two-point correlator.



2. Similarly, show that
Gr(w,a') = i0(t = V) (0] [6(), 6(a")]|0). (13)

and give a similar expression for G 4(z,2’).

3. Show that the Fourier transform (defined below) of Feynman’s propagator has the
following expression :
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where we have defined : )
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4. Given a 4-point function A(xy, za,x3,x4), we define its momentum space expression :
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(16)
Give the position space expressions, then the momentum-space expressions of the
4-point diagrams in figure 1 (forget symmetry factors) :

In particular, make the momentum-conservation d-functions explicit.

4. Wick’s theorem

1. Given the relation
Té(z1)d(w2) = d(1)d(22) : +Ap (w1 — 22)1, (17)

use it to prove Wick’s theorem for the product of 3 fields and for that of 4 fields.
2. Prove Wick’s theorem by induction :

To(x1) ... ¢plxn) = p(x1) ... d(xn) : + Z : all possible contractions :

Fig. 1 (ex.3.4)
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Fig. 1 (ex. 3.4)


