1 Massive Spin-1

The dynamics of a massive spin-one field is described by the Lagrangian :

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu} \tag{1}
\end{equation*}
$$

where

$$
F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

1.1 Field equations

1. Show that the action (1) is not invariant under the gauge transformation

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \alpha(x)
$$

2. Write down the Euler-Lagrange equations
3. Show that, for $m \neq 0$, the EL equations imply that A_{μ} must satisfy

$$
\begin{equation*}
\partial^{\mu} A_{\mu}=0 \tag{2}
\end{equation*}
$$

Why is this not the same as a gauge-condition?
4. Using the EL equations, show that A_{0} is not a dynamical degree of freedom but it can be eliminated at each instant of time (i.e. by solving an equation with no time-derivatives on A_{0}) in terms of the spatial components A_{i}.

1.2 Propagator

We now want to write down the propagator for the massive spin-1 theory.
5. Show that, up to total derivatives, the Lagrangian (1) can be rewritten as

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} A^{\mu}\left(\square \eta_{\mu \nu}-\partial_{\mu} \partial_{\nu}\right) A^{\nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu} \tag{3}
\end{equation*}
$$

6. Write the momentum-space version of the quadratic kinetic operator (including the mass term) above, and use it to find the propagator of the theory in momentum space, $G_{\mu \nu}(p)$ (Hint : by Lorentz-invariance, $G_{\mu \nu}(p)$ can only be the sum of two types of terms : $G_{\mu \nu}(p)=A(p, m) g_{\mu \nu}+B(p, m) p_{\mu} p \nu$ where A and B are functions of p and m to be determined.)
7. Show that, on-shell, the propagator satisfies $p^{\mu} G_{\mu \nu}(p)=0$, in accordance with the constraint equation (2).

1.3 Recovering Gauge invariance

We can make the theory of a massive spin- 1 gauge-invariant by introducing an appropriate auxiliary scalar field $\pi(x)$, such that under a gauge transformation :

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \alpha(x), \quad \pi(x) \rightarrow \pi(x)+\alpha(x)
$$

8. Which gauge-invariant Lagrangian for the fields $A_{\mu}(x)$ and $\pi(x)$ is equivalent to the original Lagrangian (1)?
9. Discuss the differences and similarities between this procedure and the Higgs mechanism for giving mass to A_{μ}.

2 Spontaneous Symmetry Breaking

Consider a theory with an $S U(2)$ gauge symmetry, with gauge coupling g, spontaneously broken by a scalar multiplet in two different cases :

- a doublet of complex scalars

$$
\phi=\binom{\varphi_{1}}{\varphi_{2}}
$$

in the fundamental representation of $S U(2)$, with v.e.v :

$$
\phi^{\dagger} \phi=v^{2}
$$

- a triplet of real scalars

$$
\Phi=\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

in the adjoint representation of $S U(2)$ (a.k.a. a 3-dimensional vector of $S O(3)$) with v.e.v. :

$$
{ }^{t} \Phi \Phi=v^{2}
$$

In each case :

1. Determine the unbroken symmetry group;
2. Define the the covariant derivative of the scalar field, and write explicitly its matrix form;
3. Write the scalar field kinetic term and, by setting the scalar field to its vacuum value, determine the masses of the gauge fields.
Recall that the (hermitian) generators of $S U(2)$ are given by :

- Fundamental representation :

$$
\tau^{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau^{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \tau^{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Adjoint (3-dimensional vector) representation :

$$
T^{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & i \\
0 & -i & 0
\end{array}\right), \quad T^{2}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad T^{3}=\left(\begin{array}{ccc}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

