
NPAC 2020-21 QFT

Midterm Exam
November 3 2020 - 3h

1 Exercise 1
Consider the theory of a real scalar field, with action

S =

Z
d4x
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where g > 0 and p � 3 is an integer. We consider the following transformation, which for any

� > 0 acts on both space-time coordinates and fields:

xµ
! (x0)µ = �xµ, �(x) ! �0(x0) = ��D��(x) (equivalently : �0(x) = ��D��(��1x)).

(2)

where D� is a fixed real number.

1.1 Conditions for invariance
1. Find the value of D� such that the two-derivative term in S is invariant under the trans-

formation (??).

2. For the value of D� found above, find the values of m and p such that (??) is a symmetry

of the action.

1.2 Noether current
We suppose from now on that D� = 1, m = 0 and p = 4.

3. Show that the action of an infinitesimal transformation of the type (??) on the coordinates

and field is :

x
0µ = xµ + ✏xµ, �0(x) = �(x)� ✏xµ@µ�(x)� ✏�(x), ✏⌧ 1. (3)

4. Write the corresponding infinitesimal transformation of the Lagrangian density L.

5. Construct the conserved Noether current Jµ associated to the transformation (??).

6. Recall the expression for the energy-momentum tensor Tµ⌫ . What is the relation between

Jµ and Tµ⌫?
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2 Exercise 2
We consider the Hilbert space H of a quantum Klein-Gordon field �̂(x). We want to look for

a state |�i 2 H such that

h�|�̂(xµ)|�i = �(xµ) (4)

where �(xµ) is a given, but arbitrary, solution (which we assume not to be identically zero) of

the classical Klein-Gordon equation,

⇤�(xµ) +m2�(xµ) = 0. (5)

We recall the mode expansion for the quantum field (be careful it is not exactly the same

normalization as in the lectures: there is a 1/
p
2!~q instead of 1/(2!~q) and, consistently, the

commutation relation [â(~q), â†(~q0)] does not involve !~q ; going from one normalization to the

other amounts to redefining â(~q) !
p

2!~q â(~q)):

�̂(xµ) =

Z
d3q

(2⇡)3
p

2!~q

⇥
â(~q)e�iqx + â†(~q)eiqx

⇤
, qx ⌘ !qt� ~q · ~x, !q =

p
|~q|2 +m2, (6)

and the commutation relations:

[â(~q), â†(~q0)] = (2⇡)3�(3)(~q � ~q0). (7)

1. Take |�i to be an eigenstate of â(~q):

â(~q)|�i = ↵(~q)|�i. (8)

Show that it has the property (??), with a function �(xµ) given in terms of ↵(~q).

2. Show that (??) cannot be satisfied if |�i is a state containing a finite number of particles.

[Recall that a generic n-particles state is given (up to a normalization factor) by:

|ni = â†(~k1)â
†(~k2) . . . â

†(~kn)|0i. (9)

]

3. Consider now the following state:

|�i = N

+1X

n=0

cn

✓Z
d3k

(2⇡)3
z(~k)â†(~k)

◆n

|0i. (10)

where N is a normalization coefficient which (for now) will be left undetermined. Deter-

mine the function z(~q) and the coefficients cn such that the state defined by (??) has the

desired property (??).

4. With the coefficients cn determined as above, write the state |�i in a compact form by

performing the sum over n.

5. Determine the normalization factor N by requiring h�|�i = 1 (assume the vacuum is

normalized to unity, h0|0i = 1). [Hint: recall that when the commutator of two operators

A and B is a number (i.e. a multiple of the identity operator) then eAeB = eA+Be[A,B]/2
.]

6. Consider now is a Dirac fermion field  (x). Recall the mode expansion and anticom-

mmutation relations which replace equations (??-??). Show that in this case no such

state as (??) exists which satisfies the analog of equation (??) (with the left hand side

now satisfying Dirac’s equation) or equivalently of equation (??) . What is the physical

conclusion one can draw from this ?
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3 Exercise 3
1. Scalar

Let �(x) be a real Klein-Gordon field of mass m. Define the function:

D(x, y) = h0|�̂(x)�̂(y)|0i. (11)

By expanding �(x) in momentum modes (see below), show that:

D(x, y) =

Z
d3q

(2⇡)3
e�iq(x�y)

2!q.
(12)

[Recall the mode expansion:

�̂(x) =

Z
d3q

(2⇡)3
p

2!~q

⇥
â(~q)e�iqx + â†(~q)eiqx

⇤
, qx ⌘ !qt� ~q · ~x, !q =

p
|~q|2 +m2,

(13)

and commutation relations:

[â(~q), â†(~q0)] = (2⇡)3�(3)(~q � ~q0). (14)

(be careful it is not exactly the same normalization as in the lectures: there is a 1/
p

2!~q in-

stead of 1/(2!~q) and, consistently, the commutation relation [â(~q), â†(~q0)] does not involve

!~q ; going from one normalization to the other amounts to redefining â(~q) !
p
2!~q â(~q))]

2. Spinor
Consider now a Dirac spinor field  (x), and the function:

D↵�(x, y) = h0| ↵(x) ̄�(y)|0i (15)

Show that:

D↵�(x, y) = (�i/@ +m1)↵�

Z
d3q

(2⇡)3
e�iq(x�y)

2!q
. (16)

[Recall the mode expansion (same remark as above for the normalization of b̂s(~q) and

ĉ†s(~q)):

 ↵(x) =
2X

s=1

Z
d3q

(2⇡)3
p

2!~q

h
b̂s(~q)us,↵(~q)e

�iqx + ĉ†s(~q)vs,↵(~q)e
iqx

i
, (17)

where s runs over the two spin polarizations and us(p) and vs(p) are positive- and negative-

frequency spinors, solutions of the momentum-space Dirac equation.

The anti-commutation relations are:

{b̂s(~q), b̂
†
s0(~q

0)} = (2⇡)3�(3)(~q � ~q0)�ss0 , {ĉs(~q), ĉ
†
s0(~q

0)} = (2⇡)3�(3)(~q � ~q0)�ss0 , (18)

with all other anti-commutators vanishing. You may use the identities:

2X

s=1

us,↵(~p)ūs,�(~p) = (/p+m1)↵�,
2X

s=1

vs,↵(~p)v̄s,�(~p) = (/p�m1)↵�. (19)

]
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