GENERAL RELATIVTY
 NPAC

TD 1

1 General coordinate transformations in Minkowski space

1. Start from Minkowski coordinates $\xi^{\mu}=(t, x, y, z)$ with metric $\eta_{\mu \nu}$. On transforming to general curvilinear coordinates x^{μ}, the metric tensor and Christoffel symbols are defined by

$$
\begin{align*}
g_{\mu \nu}(x) & =\eta_{\alpha \beta} \frac{\partial \xi^{\alpha}}{\partial x^{\mu}} \frac{\partial \xi^{\beta}}{\partial x^{\nu}} \tag{1}\\
\Gamma^{\mu}{ }_{\nu \lambda}(x) & =\frac{\partial x^{\mu}}{\partial \xi^{\alpha}} \frac{\partial^{2} \xi^{\alpha}}{\partial x^{\nu} \partial x^{\lambda}} \tag{2}
\end{align*}
$$

Show that

$$
\begin{equation*}
\Gamma^{\mu}{ }_{\nu \lambda}=\frac{1}{2} g^{\mu \kappa}\left(\partial_{\nu} g_{\kappa \lambda}+\partial_{\lambda} g_{\kappa \nu}-\partial_{\kappa} g_{\nu \lambda}\right) \tag{3}
\end{equation*}
$$

What are the symmetries of $\Gamma^{\mu}{ }_{\nu \lambda}$?
2. Show that under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$ (assumed invertible),

$$
\begin{equation*}
\frac{d^{2} x^{\prime \alpha}}{d \tau^{2}}+\Gamma^{\prime \alpha}{ }_{\beta \gamma} \frac{d x^{\prime \beta}}{d \tau} \frac{d x^{\prime \gamma}}{d \tau}=\left(\frac{\partial x^{\prime \alpha}}{\partial x^{\mu}}\right)\left[\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma^{\mu}{ }_{\nu \lambda} \frac{d x^{\nu}}{d \tau} \frac{d x^{\lambda}}{d \tau}\right] . \tag{4}
\end{equation*}
$$

Hence show that if the geodesic equation holds in one set of coordinates, it holds in another.
3. Determine how the Christoffel symbols transform under a coordinate transformation $x^{\mu} \rightarrow x^{\prime \mu}$.

2 Geodesic equation

1. Consider a time-like curve $C(\lambda)$, parametrised by a parameter λ, on a space-time with metric $g_{\mu \nu}$. What is the sign of $g_{\alpha \beta}(x) \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}$ on this curve? Obtain the geodesic equation by minimising the proper-time between two points $p_{0}=C\left(\lambda_{0}\right)$ and $p_{1}=C\left(\lambda_{1}\right)$:

$$
\begin{equation*}
S_{0}[x]=-m \int_{p_{0}}^{p_{1}} d \tau=-m \int_{p_{0}}^{p_{1}} \frac{d \tau}{d \lambda} d \lambda=-m \int_{p_{0}}^{p_{1}} d \lambda \sqrt{-g_{\alpha \beta}(x) \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}} \tag{5}
\end{equation*}
$$

(Here τ is the proper-time.) In the last step choose $\lambda=\tau$ to express the geodesic equation in terms of x^{μ} and $\dot{x}^{\mu}=d x^{\mu} / d \tau$.
2. Show that the same geodesic equation is obtained from the action

$$
\begin{equation*}
S_{1}[x]=\int d \tau \mathcal{L}\left[x^{\mu}, \dot{x}^{\mu}\right] \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L}=g_{\mu \nu}(x) \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \tag{7}
\end{equation*}
$$

Note: For massless particles, proper-time does not exist. The geodesic equation is expressed in terms of a parameter λ along the light-like geodesic, satisfying

$$
\begin{equation*}
g_{\alpha \beta}(x) \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0 . \tag{8}
\end{equation*}
$$

The geodesic equation then reads

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma^{\mu}{ }_{\nu \lambda} \frac{d x^{\nu}}{d \lambda} \frac{d x^{\lambda}}{d \lambda}=0 \tag{9}
\end{equation*}
$$

3. Consider a space-time metric of the form

$$
\begin{equation*}
d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+r^{2} d \Omega^{2} \tag{10}
\end{equation*}
$$

where $d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. This is the general form of a static spherically symmetric metric, which we will use later in the course to describe the gravitational field of a star. Write down the corresponding Lagrangian \mathcal{L}. Show that t is a cyclic variable, and determine its equation of motion. From this, show that

$$
\begin{equation*}
\Gamma_{r t}^{t}=\Gamma_{t r}^{t}=\frac{A^{\prime}}{2 A}, \quad \Gamma_{\mu \nu}^{t}=0 \text { otherwise } \tag{11}
\end{equation*}
$$

From the (r, θ, ϕ) equation determine the remaining Christoffel symbols. Verify you calculations by determining the Christoffel symbols directly from the metric.

3 Rindler coordinates

Rindler coordinates (ρ, ψ) are defined in terms of Minkowski coordinates (t, x) by

$$
\begin{equation*}
t=\rho \sinh \psi \quad x=\rho \cosh \psi \tag{12}
\end{equation*}
$$

1. Write down the metric in Rindler coordinates, and determine all the non-vanishing Christoffel symbols.
2. Write down the ρ and ψ components of the geodesic equation, together with the definition of proper-time expressed in Rindler coordinates.
3. Show that a first integral of the ψ-geodesic equation is $\rho^{2} \dot{\psi}=K$ where K is a positive integration constant. Now show that ρ satisfies

$$
\begin{equation*}
\dot{\rho}^{2}-\frac{K^{2}}{\rho^{2}}+1=0 \tag{13}
\end{equation*}
$$

4. The trajectories of the geodesics in space-time are of the form $\rho(\psi)$. Eliminate τ to find an equation for $d \rho / d \psi$. Verify that its solution is

$$
\begin{equation*}
\rho^{-1}=\frac{1}{K} \cosh \left(\psi-\psi_{0}\right) \tag{14}
\end{equation*}
$$

where ψ_{0} is an integration constant. Show that this corresponds to rectilinear motion of the form $x=x_{0}+v t$ where (t, x) are Minkowski coordinates.
5. Show that the proper-time for an observer is given by

$$
\begin{equation*}
\tau=\int d \psi \sqrt{\rho^{2}-\left(\frac{d \rho}{d \psi}\right)^{2}} \tag{15}
\end{equation*}
$$

6. Consider two observers : \mathcal{O} who is intertial and fixed at $x=x_{0}>0$; and \mathcal{O}^{\prime} who has constant acceleration (that is, in her instantaneous rest frame, the acceleration is constant). Show that the trajectory of \mathcal{O}^{\prime} is given by

$$
\begin{equation*}
\rho=\rho_{0}, \quad x^{2}-t^{2}=\rho_{0}^{2} \tag{16}
\end{equation*}
$$

and determine her acceleration in terms of ρ_{0}. Draw the world-lines of \mathcal{O} and \mathcal{O}^{\prime} on the space-time diagrams (t, x) and then (ψ, ρ). Indicate x_{0} and ρ_{0} on each of your diagrams.
7. Use (15) to deterime the proper-time of \mathcal{O} and \mathcal{O}^{\prime} as a function of ψ.
8. Now introduce a constant ψ_{0} such that $x_{0} \equiv \rho_{0} \cosh \psi_{0}$. Calculate the proper-time which has elapsed between the two instances at which the observers meet (namely $\psi= \pm \psi_{0}$). Show that

$$
\begin{equation*}
\frac{\Delta \tau_{\mathcal{O}}}{\Delta \tau_{\mathcal{O}^{\prime}}}=\frac{\sinh \psi_{0}}{\psi_{0}}>1 \tag{17}
\end{equation*}
$$

Which is larger?
9. Show that the trajectories $\rho(\psi)$ of light rays are given by

$$
\begin{equation*}
\rho=\rho_{*} e^{ \pm\left(\psi-\psi_{*}\right)} \tag{18}
\end{equation*}
$$

where ψ_{*} and ρ_{*} are the coordinates of a point on the light-ray.

4 Extension of the Rindler metric

Here we consider the metric

$$
\begin{equation*}
d s^{2}=-x^{2} d t^{2}+d x^{2}, \quad-\infty<t<+\infty, \quad x>0 \tag{19}
\end{equation*}
$$

Notice that, in this coordinate system, the metric is singular at $x=0$.

1. Write down the equation giving trajectories $t(x)$ of light-rays in this metric. Express them in terms of the new coordinates

$$
u \equiv t-\ln (x) \quad v \equiv t+\ln (x)
$$

2. Write the metric in this new coordinate system (u, v).
3. Now carry out a further change of variables

$$
U=-e^{-u}, \quad V=e^{v}
$$

Write down the metric in these variables. Same question for the change of variables

$$
T=\frac{1}{2}(U+V), \quad X=\frac{1}{2}(U-V)
$$

Identify this new metric. In what range are the coordinates T and X defined? What can you say about the singularity at $x=0$ in the metric (19)? Convince yourself that it is just a "coordinate singularity", namely due to an inadapted choice of coordinates, and that the metric written in another set of coordinates is perfectly well defined.

5 From past exam : Basics

1. Show that the spacetime interval $d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}$ is invariant under coordinate transformations $x^{\alpha} \rightarrow \tilde{x}^{\alpha}$ if $g_{\alpha \beta}$ are components of a tensor transforming according to the tensor transformation law

$$
g_{\alpha \beta} \longrightarrow \tilde{g}_{\alpha \beta}=\frac{\partial x^{\mu}}{\partial \tilde{x}^{\alpha}} \frac{\partial x^{\nu}}{\partial \tilde{x}^{\beta}} g_{\mu \nu} .
$$

2. Let V^{α} be the contravariant components of a vector, and consider an invertible coordinate transformation $x^{\delta} \rightarrow \tilde{x}^{\delta}$. Write down the transformation law for $\nabla_{\beta} V^{\alpha}$, and deduce that Christoffel symbols transform according to

$$
\Gamma_{\beta \gamma}^{\alpha} \longrightarrow \tilde{\Gamma}_{\beta \gamma}^{\alpha}=\Gamma_{\rho \sigma}^{\mu} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\rho}}{\partial \tilde{x}^{\beta}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\gamma}}+\frac{\partial^{2} x^{\sigma}}{\partial \tilde{x}^{\beta} \tilde{x}^{\gamma}} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\sigma}} .
$$

3. Consider a 2 -sphere with coordinates (θ, ϕ) and line-element

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2} .
$$

Show that lines of constant longitude ($\phi=$ constant) are geodesics, and that the only line of constant latitude $(\theta=$ constant $)$ that is a geodesic is the equator $(\theta=\pi / 2)$.

6 From Exam : Locally inertial coordinates

1. At a point $x_{(0)}^{\alpha}$ in some coordinate system x^{α}, and as seen in lectures, it is always possible to construct a locally inertial coordinate system ξ^{α}. Which quantity should vanish at $x_{(0)}^{\alpha}$ in this locally inertial coordinate system, and why?
2. Suppose that the point $x_{(0)}^{\alpha}$ and in the coordinate system x^{α}, the Christoffel symbol has the value $\Gamma_{(0) \mu \nu}^{\alpha}$. Then at $x_{(0)}^{\alpha}$, the ξ^{α} are constructed as follows :

$$
\begin{equation*}
\xi^{\alpha}(x)=x^{\alpha}-x_{(0)}^{\alpha}+\frac{1}{2}\left(x^{\mu}-x_{(0)}^{\mu}\right)\left(x^{\nu}-x_{(0)}^{\nu}\right) \Gamma_{(0) \mu \nu}^{\alpha} . \tag{20}
\end{equation*}
$$

The point $x_{(0)}^{\alpha}$ in the new coordinates is the origin $\xi^{\alpha}=0$. Prove explicitly that, when transformed to the new coordinates, the relevant quantity that should vanish at $\xi^{\alpha}=0$ indeed does so.
[Hint : for simplicity, choose the origin of your x^{α} coordinates such that $x_{(0)}^{\alpha}=0$.]
3. In the locally inertial coordinate system ξ^{α}, show that $\partial_{\alpha}\left(g_{\beta \gamma} \xi^{\beta} \xi^{\gamma}\right)=2 g_{\alpha \beta} \xi^{\beta}$.

7 From past exam : Coordinate transformations

Consider the line element

$$
d s^{2}=-d t^{2}+t^{2}\left[d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right], \quad t>0
$$

Carry out the change of coordinates

$$
\begin{equation*}
\tilde{t}=t \cosh \chi, \quad \tilde{r}=t \sinh \chi, \quad \tilde{\theta}=\theta, \quad \tilde{\phi}=\phi . \tag{21}
\end{equation*}
$$

Identify the new metric, specifying carefully the allowed ranges of the coordinates \tilde{t} and \tilde{r}. What do geodesics look like in this new metric (note : essentially no calculation is required to answer this question)? Conclude that in the original (t, χ, θ, ϕ) coordinate system, geodesics are given by $t=d /(\sinh \chi-v \cosh \chi)$ where v is a constant that can be interpreted as a speed, and d is another constant that can be interpreted as an initial position.

