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1 Linearised Einstein equations and GWs

Decompose the metric into the flat Minkowski metric, plus a small perturbation :

gµν = ηµν + hµν

with |hµν | � 1.
We restrict ourselves to coordinates in which ηµν takes its canonical form ηµν = diag(−1,+1,+1,+1).

Write down the following quantities to linear order in the perturbation :

1. The inverse metric gµν . If your expression contains hµν , explain how this is obtained from
hαβ (i.e. what metric do you use to raise the indices ?)

2. The Christoffel symbol Γρµν .

3. The Riemann tensor Rµνρσ.

4. The Ricci tensor Rαβ.

5. The Ricci scalar R.

6. The Einstein tensor Gαβ.

7. Does your Einstein tensor satisfy ∂µGµν = 0 ? Why should it satisfy this ?

Now consider a gauge/coordinate transformation

xµ → x′µ = xµ − ξµ(xν) (1)

8. Determine how hαβ transforms under this transformation.

9. Same question for the Riemann tensor Rµνρσ

Action for the linearised Einstein equation :

10. Show that the Einstein tensor of part 6 can be obtained by varying the following Lagran-
gian L with respect to hµν :

L =
1

2

[
(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)− 1

2
ηµν(∂µh)(∂νh)

]
, (2)

where h = hαα.

11. (If you are feeling energetic :) This action can also be obtained from the Einstein Hilbert
action, derived in TD2 (see the equation in a box under equation (13) in TD2), but
where now R must be expanded to second order in the metric perturbation. Show that
the second order expansion of the EH action is indeed identical to (2).

Trace-reversed perturbation
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12. Write down the Einstein equations in terms of the trace-reversed perturbation defined in
lectures :

h̄µν ≡ hµν −
1

2
hηµν (3)

13. Show that under the gauge transformation above, Eq. (1),

h̄µν → h̄′µν = h̄µν + ξµ,ν + ξν,µ − ξρ,ρηµν (4)

14. Show that it is always possible to impose the Lorentz gauge, ∂µh̄µν = 0. Namely, show
that if h̄µν does not satisfy the Lorentz gauge, then one can find a gauge transformation
h̄µν → h̄′µν such that the corresponding h̄′µν does.

15. Show that in the absence of matter, the linearised Einstein equations become

�h̄µν = 0 (5)

These equations are very similar to Maxwells equations in empty space : the only difference
is that the perturbations are associated with a metric tensor (2 indices). Convince yourself
that equation (5) is nothing other than the wave equation. Show that a solution for a
wave travelling in the z-direction, is

h̄µν = Hµνe
ikαxα (6)

where Hµν is the polarisation tensor and

kµ = (ω, 0, 0, ω) (7)

with k2 = 0. What is the speed of propagation of the gravitational wave ?

2 Gravitational waves [Exam 2018]

As explained in lectures, GWs are studied by considering a metric gµν = ηµν + hµν , where
the perturbation hµν(t, ~x) is small. One works to linear order in hµν .

1. Show that in the transverse and tracless gauge (recalled in the formula sheet)

∂0h
00
TT = 0, ∂ih

ij
TT = 0,

where (i, j = 1, 2, 3). Deduce that h00TT = 0, and hence that h0µTT = 0.

2. The metric describing Minkowski space and a GW is thus given by

ds2 = −dt2 + (δij + hTT
ij )dxidxj

Show that Rµ
00ν = 1

2
∂2t (hTT)µν .

3. The invariant length between two free static particles A and B, situated at coordinate
positions xiA and xiB is

L =
√
gij∆xi∆xj

where ∆xi = xiB − xiA ≡ L0n
i, the unit vector ni satisfies δijn

inj = 1, and L0 =√
δij∆xi∆xj. Show that when the GW passes, the relative variation in distance between

A and B is given by
δL

L0

=
1

2
hTT
ij n

inj
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3 Electromagnetism and the TT gauge [from D.Langlois

book]

The aim of this exercise is to understand the TT gauge, using electromagnetism as a helpful
example.

1. The electromagnetic Lagrangian L ∝
√
−gFµνF µν is invariant under the U(1) gauge

transformations Aµ → Aµ + ∂µχ. Use this invariance to show that one can always choose
the Lorentz gauge ∂µA

µ = 0.

2. Write down Maxwells equations (in the vacuum) in the Lorentz gauge. Show that there
exists a residual gauge freedom, and use it to fix A0 = 0. (Note that the solution of the
wave eqaution ∂µ∂

µf = 0 with initial conditions f = 0 and ∂tf = 0 on a hypersurface of
t=constant, is f = 0.)

3. Using the above, show that for gravitational waves propagating in empty space, one can
impose the TT gauge.

4 Gravitational waves

Consider a non-relativistic system with one degree of freedom, namely a mass µ that performs
harmonic oscillations along the z axis : z0(t) = A cosωst, with Aωs � 1 and ωs > 0. (In practise
the system could consist of 2 masses connected by a massless spring, and z0(t) is the relative
coordinate of the centre-of-mass system.)

i) The mass density is given by ρ(t, ~x) = µδ(x)δ(y)δ(z − z0(t)). Determine h̄ij(t, ~x) at a
distance |~x| = R far from the source.

ii) Calculate hTT
ij for a wave propagating in the direction ~x = R~n with ~n = (0, sin θ, cos θ).

Comment on the θ-dependence of your result.
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