Detector Physics 2022/2023, Lecture 8

Cherenkov radiation and particle identification

Alessandra Tonazzo (APC/IN2P3 and Université de Paris)

tonazzo@in2p3.fr

References

many of my slides are taken from

- Thomas Patzak, NPAC Lectures 2019 (thanks!)
https://npac.lal.in2p3.fr/1st-semester-lectures-1920/
- S. Easo (RAL) Graduate Student Lecture 2011
https://warwick.ac.uk/fac/sci/physics/staff/academic/gershon/gradteaching/warwickweek/material/detectors/warwick_week_pid_lecture_20 11_pdf.pdf

Cherenkov radiation

Cherenkov radiation: some history

1888 predicted by O. Heaviside
Deformation of the electromagnetic field of a charged, moving particle 1901 predicted by Kelvin 1904 predicted by Sommerfeld

Cherenkov:
1934 experimentally observed
Frank \& Tamm
1937 theoretical explanation
1958 Nobel prize

The Nobel Prize in Physics 1958
"for the discovery and the interpretation of the Cherenkov effect"

Pavel Alekseyevich Cherenkov

Q $1 / 3$ of the prize
UsSR
P.N. Lebedev Plysical Irstitute Moscow, USSR
b. 1904
d. 1990

II'ja Mikhailovich Frank

Q $1 / 3$ of the prize
USSR
Univers ity of Moscow: P.N Lebedev Physical Irstitute Moscow, USSR
b. 1908
d. 1900

Igor Yevgenyevich Tamm

Q $1 / 3$ of the prize
USSR
University of Moscow; P.N. Lebedev Physical IIrstitute Moscow, USSR
d. 1971

Cherenkov radiation: some history

Typical Apparatus used by Cherenkov to study the angular distribution of Cherenkov photons. (Incident γ ray produces electrons by compton scattering in the liquid).
P. Cherenkov established that:

- Light Intensity is proportional to the electron path length in the medium.
- Light comes only from the 'fast' electrons above a velocity threshold, in his Apparatus.
- Light emission is prompt and the light is polarized.
- The wavelength spectrum of the light produced is continuous. No special spectral lines.
- The angular distribution of the radiation, its intensity, wavelength spectrum and its dependence on the refractive index agree with the theory proposed by his colleagues Frank and Tamm.

Cherenkov radiation

$$
\left\langle-\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} W_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

Density correction due to polarization of the material results in an attenuation of the relativistic rise.

Charged particles polarize material
 time dependent dipole field \rightarrow dipole radiation

For $v<c / n$:
Induced dipoles symmetrically arranged around particle path -> no net dipole moment \rightarrow no Cherenkov radiation

For $v>c / n$:

Symmetry is broken since the particle goes faster then em waves -> non-vanishing dipole moment
\rightarrow Cherenkov radiation

Cherenkov radiation emission

Particle going faster than the speed of light in the material

Cherenkov radiation angle

Relation between Cherenkov angle and particle velocity in different materials

Liquids, solids

Cherenkov radiation angle

Cherenkov radiation

Radiation of "Cherenkov" photons with a continuos spectrum The photons are polarized

First theory by Tamm and Frank

$$
\left(-\frac{d E}{d x}\right)_{\text {Cherenkov }}=\frac{4 \pi e^{2}}{c^{2}} \int \omega d \omega\left(1-\frac{1}{\beta^{2} n^{2}}\right)
$$

This is already included in the $\mathrm{dE} / \mathrm{dx}$ by Bethe \& Bloch (relativistic rise)

Energy loss by Cherenkov radiation: $-\left(\frac{d E}{d x}\right)_{\text {Cherencov }} \cong 10^{-3} \mathrm{MeVcm}^{2} \mathrm{~g}^{-1}$
to be compared with:

Energy loss by collision in H_{2} :

$$
-\left(\frac{d E}{d x}\right)_{\text {Coll }} \cong 0,1 \mathrm{MeVcm}^{2} \mathrm{~g}^{-1}
$$

Energy loss by collision in a gas with large Z: $-\left(\frac{d E}{d x}\right)_{\text {Coll }} \cong 0,01 \mathrm{MeVcm}^{2} \mathrm{~g}^{-1}$

Cherenkov photon density

The number of emitted photons per unit length can be obtained from the cross section:

$$
\frac{d^{2} N}{d \lambda d x}=\frac{2 \pi \alpha z^{2}}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n^{2}(\lambda)}\right)=\frac{2 \pi \alpha z^{2}}{\lambda^{2}} \sin ^{2} \theta_{C}
$$

\rightarrow Number of emitted photons decreases with photon wavelength

$$
\begin{aligned}
\frac{d^{2} N}{d E d x}=\frac{z^{2} \alpha}{\hbar c}\left(1-\frac{1}{\beta^{2} n^{2}(\lambda)}\right) & =\frac{z^{2} \alpha}{\hbar c} \sin ^{2} \theta_{C} \\
& \approx \text { const }
\end{aligned}
$$

\rightarrow Energy of emitted photons is uniformly distributed

Cherenkov detectors

Main components of a Cherenkov detector

- Radiator
to produce the Cherenkov photons
- Mirror, lens, etc.
to collect/transport the photons
- Photodetector
to detect the photons
- The radiator is chosen based on its refractive index
Example of radiators

Medium	$\mathrm{n}-1$	$\gamma_{t h}=$ $1 / \sqrt{1-\beta_{t h}^{2}}$	Photons/m
He (STP)	3.510^{-5}	120	3
CO_{2} (STP)	4.110^{-4}	35	40
Silica aerogel	$0.025-0.075$	$4.6-2.7$	$2400-6600$
water	0.33	1.52	21300
Glass	$0.46-0.75$	$1.37-1.22$	$26100-33100$

Cherenkov detectors

Air, sea-water or ice are exploited as radiators in some astroparticle physics experiments

Antares / KM3Net

Cherenkov detectors

Detectors based on Cherenkov radiation are of 3 types

- Threshold counters (yes/no Cherenkov radiation)

- Differential counters (measures the Cherenkov angle in a given range)
- Ring imaging counters (reconstruct the image of the Cherenkov ring)

Cherenkov detectors: threshold counters

- Separation of particles with the same momentum but different masses

Cherenkov radiation only if $\beta>\frac{1}{n}$
for a given momentum p, since $\beta=\frac{p}{E}=\frac{p}{\sqrt{p^{2}+m^{2}}}=\frac{1}{\sqrt{1+(m / p)^{2}}}$, Cherenkov radiation only if $m<p \sqrt{n-1}$

- Improved version: use number of photons
$\xrightarrow[\text { types. }]{ } N \approx 1-\frac{1}{n^{2} \beta^{2}}=1-\frac{1}{n^{2}}\left(1+\frac{m^{2}}{p^{2}}\right)$

Threshold Cherenkov detectors: examples

BELLE@KEK (1999-2010)
to observe CP violation in B decays at an e+e- collider

b) $\mathrm{B}=1.5$ Tesla

Five aerogel tiles inside an Al box lined with a white reflector(Goretex)

HARP@CERN (2000-2002)
measurement of hadron production on different targets

Cherenkov radiation and particle identification

(Complementing Cherenkov PID : Time-of-Flight)

Distinguishing particles with ToF:
[particles have same momentum p]

$$
\begin{aligned}
\Delta t & =L\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)=\frac{L}{c}\left(\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}\right) \\
& =\frac{L}{p c^{2}}\left(E_{1}-E_{2}\right)=\frac{L}{p c^{2}}\left(\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}-\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}\right)
\end{aligned}
$$

Particle 1 : velocity $\mathrm{v}_{1}, \boldsymbol{\beta}_{1}$; mass m_{1}, energy E_{1}
 Particle 2 : velocity $\mathrm{v}_{2}, \beta_{2}$; mass m_{2}, energy E_{2}
 Distance L : distance between ToF counters

Relativistic particles, $E \simeq p c \gg m_{i} c^{2}$:
σ_{t} : time resolution of the detector

Cherenkov + TOF routinely used for beam monitoring in fixed-target experiments

$$
\begin{aligned}
& \Delta t \approx \frac{L}{p c^{2}}\left[\left(p c+\frac{m_{1}^{2} c^{4}}{2 p c}\right)-\left(p c+\frac{m_{2}^{2} c^{4}}{2 p c}\right)\right] \\
& \Delta t=\frac{L c}{2 p^{2}}\left(m_{1}^{2}-m_{2}^{2}\right)
\end{aligned}
$$

Cherenkov detectors: differential counters

For a given momentum, $\cos \theta$ is function of the mass

$$
\cos \theta=\frac{1}{n \beta}=\frac{1}{n(p / E)}=\frac{\sqrt{m^{2}+p^{2}}}{n p}
$$

Differential Cherenkov detectors : example

With Solid (quartz) radiator

slide from
S. Easo

> Discovery of anti-proton in 1955 by Chamberlain, Segre et. al. at Berkeley.
> Nobel Prize in 1959

Fig. 2. The differential Cherenkov counter used in the antiproton discovery experiment: (a) side view: (b) end view.

Cherenkov detectors: ring imaging

- Intercept the Cherenkov cone with a plane \rightarrow ring
- Measure both the Cherenkov angle and the number of detected photons
$(\rightarrow$ better resolution on β than equivalent threshold or differential detectors)
- Allows for particle identification over large surfaces
- Requires photodetectors with single photon identification capabilities

RICH and PID

$$
r=L x \tan \theta
$$

Example : Incoming particle with $\mathrm{p}=1 \mathrm{GeV} / \mathrm{c}, \mathrm{L}=1 \mathrm{~m}$, in LiF ($\mathrm{n}=1.392$):

	$\theta(\mathrm{deg})$	$\mathrm{r}(\mathrm{m})$
π	43.5	0.95
K	36.7	0.75
P	9.95	0.18

$$
\text { Very good } \pi / \mathrm{K} / \mathrm{p} \text { seperation }
$$

Tom Ypsilantis

RICH: examples

DELPHI@LEP (CERN, 1988-2000)

"a Detector with Lepton, Photon and Hadron Identification"
multi-purpose detector for precision EW measurements in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions at sqrt(s) $=91-200 \mathrm{GeV}$
\rightarrow one of the first large-size RICH detectors

$\rightarrow \pi / K / p$ separation over a large momentum range: 0.7-45 GeV/c

RICH: examples

LHCb@LHC (CERN)

Identify charged hadrons (π, K) in B (and D) meson decays

- 2 RICH detectors to cover different momentum and polar angle ranges
- 2 radiators in each RICH (Aerogel $+\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{CF}_{4}$)
- Photodetectors: HPDs (see next slide)

RICH: examples

LHCb@LHC (CERN)

Hybrid Photon Detectors (HPDs)
Photoelectric effect +
focusing of photoelectrons to Si sensors
\rightarrow Accurate measurement of space and time of photons
\rightarrow Short flight path of PEs: reduced sensitivity to magnetic field
\rightarrow Can detect single photons

RICH: examples

AMS Ring Imaging CHerenkov (RICH)

Measurement of Nuclear Charge (Z^{2}) and its Velocity to 1/1000

- 2 radiators:

16 tiles of NaF tiles, $\mathrm{n}=1.33$
92 tiles of Aerogel, $n=1.05$

Multi-Anode PMTs

- Multianode photomultipliers are a marvel of miniaturization \rightarrow up to 64 pixels in a single tube, each with size $\sim 2 \times 2 \mathrm{~mm}^{2}$
- Dynode structure formed from a stack of perforated metal foils
- Signal width dominated by fluctuations in the charge multiplication of the first dynodes

Cherenkov PID in neutrino experiments

Neutrinos:

3 flavours (v_{e}, v_{μ}, v_{τ})
3 mass eigenstates $\left(v_{1}, v_{2}, v_{3}\right)$
Observation of neutrino oscillations
\rightarrow flavour eigenstates are superposition of mass eigenstates
\rightarrow neutrinos have mass

> Neutrino experiments need to identify the flavour of the neutrino $==$ flavour of the lepton produced in CC interactions

The Nobel Prize for
Physics 2015

Takaaki Kajita
Super Kamiokande Collaboration University of Tokyo, Japan

Arthur B. McDonald Sudbury Neutrino Observatory Collaboration Queen's University, Canada
«For the discovery of neutrino oscillations, which shows that neutrinos have mass. »

Cherenkov PID in neutrino experiments

Particle ID in a Cerenkov Detector:

Identification of particles produced in neutrino
interactions:
Based on the characteristics of the Cherenkov cone

Example: SuperKamiokaNDE

Kamioka mine, Japan
~1000 m under Mount Ikeno

Example: SuperKamiokaNDE

Example: SuperKamiokaNDE

Example: SuperKamiokaNDE

Example: Sudbury Neutrino Observatory (SNO)

Example: SNO

gamma rays which are emitted when the neutron is finally captured by another nucleus. The gamma rays will scatter electrons which produce detectable light via the Cherenkov process

Example: SNO

Cherenkov detectors for astroparticle physis

Detection of very high energy neutrinos in sea water / ice KM3Net / IceCube

Cherenkov detectors for astroparticle physis

Detection of very high energy neutrinos in sea water / ice
KM3Net / IceCube

Cherenkov detectors for astroparticle physis

Cherenkov radiation and detectors: summary

- Charged particles travelling through a medium at a speed larger than that of light in the medium produce Cherenkov radiation
- Light emission at angle $\cos \theta_{C}=\frac{1}{n \beta}$
- Used for particle identification in different types of detectors
- Threshold
- Differential
- Ring Imaging (RICH)
- Combined with Time-of-Flight, $\mathrm{dE} / \mathrm{dx}$ (+ calorimetry etc.) for particle identification over wide momentum range
- Development of different types of photosensors

Exercises

Exercise 1

Compare the number of Cherenkov photons expected from a 2 MeV electron interacting in water to the number of scintillation photons expected from the same energy electron interacting in $\mathrm{NaI}(\mathrm{TI})$.

Exercise 2

We want build a huge detector filled with water to detect the Cherenkov light from charged particles. Should we use "UV-transmitting glass" glass or "Borosilicate glass" for the PMT photocatodes?

The photon density per unit length can be expressed as

$$
\frac{d N}{d x}=2 \pi \mathrm{z}^{2} \alpha \sin ^{2} \theta \int_{\lambda_{1}}^{\lambda_{2}} \frac{\mathrm{~d} \lambda}{\lambda^{2}} \quad \text { with } \quad 2 \pi \mathrm{z}^{2} \alpha=4,584 \times 10^{-2}
$$

The refractive index of water is 1.33 .

Exercises

Exercise 3 (exam 2020-2021)
A 500 MeV electron interacts in the water ($\mathrm{n}=1.3$) of the SuperKamiokande experiment at a distance of 5 m from the detector wall. The number of Cherenkov photons it produces per unit path (in nm) and wavelength (in nm) is

$$
\frac{d^{2} N}{d x d \lambda}=2 \pi \alpha \sin ^{2} \theta_{C} \frac{1}{\lambda^{2}}
$$

where α is the fine structure constant $\left(\sim 7.3 \times 10^{-3}\right)$.
The range of 500 MeV electrons in water is about 1 m .

- Compute:
- the radius of the Cherenkov ring on the detector wall (neglect deformations, i.e. assume the wall to be flat and perpendicular to the electron trajectory);
- the number of detected photons, if the PMTs detect photons of wavelengths between 300 and 500 nm with an average Quantum Efficiency of 20% and provide 40% geometrical coverage.

Exercises

Exercise 4 (exam 2020-2021)
The figure on the right shows the Cherenkov angle as a function of momentum for different kinds of particles in media with different refraction indices: Aerogel ($\mathrm{n}=1.03$), $\mathrm{C}_{4} \mathrm{~F}_{10}$ gas ($n=1.0014$) and CF_{4} gas ($n=1.0005$).
Which combination of these radiators would you choose to discriminate pions from kaons in a particle beam with a momentum of $5 \mathrm{GeV} / \mathrm{c}$? Explain.

(Appendix: Change of variable in a PDF)

- Probability density function (PDF) of the variable $x, P(x)$.
- How to compute the PDF of a new variable y, if we know the dependence $y(x)$?

$$
\frac{d N}{d y}=\frac{d N}{d x} \frac{d x}{d y}=\frac{\frac{d N}{d x}}{\left|\frac{d y}{d x}\right|}=\frac{P(x(y))}{|J|}
$$

Examples:

1) zenith angle distribution of cosmic rays
$\frac{d N}{d \vartheta} \propto(\cos \vartheta)^{2} \quad \frac{d N}{d \cos \vartheta}=\frac{d N}{d \vartheta} \frac{d \vartheta}{d \cos \vartheta} \propto \frac{(\cos \vartheta)^{2}}{|\sin \vartheta|}=\frac{x^{2}}{\sqrt{1-x^{2}}}$
2) uniform distribution in a cylindrical volume
$\frac{d N}{d V}=C^{\prime}$ with $d V=h 2 \pi r d r=h \pi d\left(r^{2}\right)$ so $\frac{d N}{d r^{2}}=C$
but $\frac{d N}{d r}=\frac{C}{\left|\frac{d r}{d\left(r^{2}\right)}\right|}=C\left|\frac{d\left(r^{2}\right)}{d r}\right|=2 C r$

(Appendix: Change of variable in a PDF)

Cherenkov radiation photon spectra:

$$
\frac{d N}{d \lambda}=\frac{C}{\lambda^{2}}
$$

change variable to $E=\frac{h c}{\lambda} \quad \frac{d E}{d \lambda}=\frac{h c}{\lambda^{2}}$

$$
\frac{d N}{d E}=\frac{\frac{d N}{d \lambda}}{\left|\frac{d E}{d \lambda}\right|}=\frac{\frac{C}{\lambda^{2}}}{\frac{h c}{\lambda^{2}}}=\text { constant }
$$

