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Chapter 1

Many-body quantum mechanics

This chapter is first devoted to recall the basic principles of quantum mechanics and the
necessity to add two principles when addressing a many-body system of identical particles.
The notions are then applied to the cases of one- and two-nucleon systems, where relevant
operators and one- and two-body bases are discussed.

1.1 One-body quantum system

1.1.1 Basic postulates

Let us first focus on quantum systems made of one particle of mass m, spin 1/2 and isospin
1/2.

1. Allowed physical states are represented by vectors of a Hilbert space H1, i.e. |ψ〉 ∈ H1,
which can be decomposed as the tensor product of three Hilbert spaces associated with
different dynamical variables

H1 ≡ H1space ⊗H1spin ⊗H1isospin , (1.1)

where H1space relates to spatial coordinates, H1spin to spin coordinates and H1isospin to
isospin coordinates.

2. An observable A is represented by a self-adjoint operator Â acting on H1. In particular,
operators ~̂r, ~̂p, ~̂s, and ~̂τ denoting respectively position, momentum, spin and isospin
observables form an irreducible set, namely they constitute a minimal set such that no
operator commutes with all of them at the same time. This implies that any physical
observable A can be described by an operator that is a function of these four operators,
i.e. Â ≡ Â(~̂r, ~̂p, ~̂s, ~̂τ).

Different operators act on different spaces: ~̂r and ~̂p act on H1space , ~̂s acts on H1spin and
~̂τ acts on H1isospin . Operators ~̂r and ~̂p are related to their classical counterpart by the
principle of "associated operators"

~rcl → ~̂r ≡ ~r× , (1.2a)

~pcl → ~̂p ≡ −i~~∇ , (1.2b)

where the operators are here given in the position basis of H1space , i.e. in the basis of
eigenvectors of ~̂r defined through

~̂r |~r〉 = ~r |~r〉 . (1.3)

3



4 Chapter 1. Many-body quantum mechanics

The fact that Eq. (1.2) provides the operators in this particular basis of interest is
more correctly formalized as

〈~r| ~̂r |~r ′〉 ≡ δ(~r − ~r ′)~r , (1.4a)

〈~r| ~̂p |~r ′〉 ≡ −i~δ(~r − ~r ′) ~∇ . (1.4b)

The principle of associated operators does not applies to ~̂s and ~̂τ that are purely
quantum operators expressed in terms of Pauli matrices via

~̂s ≡ ~
2 ~̂σspin , (1.5a)

~̂τ ≡ ~
2 ~̂σisospin , (1.5b)

where the Pauli matrices write as

σ̂x ≡
(

0 1
1 0

)
, σ̂y ≡

(
0 −i
i 0

)
, σ̂z ≡

(
1 0
0 −1

)
, (1.6)

in the eigenbasis of σ̂z. Fundamental operators obey the following commutation rules1

[r̂i, p̂j ] = i~δij , (1.7a)

[ŝi, ŝj ] = i~
∑
k

εijkŝk , (1.7b)

[τ̂i, τ̂j ] = i~
∑
k

εijk τ̂k , (1.7c)

[r̂i, r̂j ] = 0 , (1.7d)
[p̂i, p̂j ] = 0 , (1.7e)
[r̂i, ŝj ] = 0 , (1.7f)
[r̂i, τ̂j ] = 0 , (1.7g)
[p̂i, ŝj ] = 0 , (1.7h)
[p̂i, τ̂j ] = 0 , (1.7i)
[ŝi, τ̂j ] = 0 , (1.7j)

where, e.g., i = x, y, z. Therefore {~̂r, ŝz, τ̂z} forms a set of commuting observables and
can be simultaneously diagonalized by the eigenbasis {|~rστ〉 ≡ |~r〉 ⊗ |σ〉 ⊗ |τ〉} such as

r̂i|~rστ〉 = ri|~rστ〉 , (1.8a)
ŝz|~rστ〉 = σ|~rστ〉 , (1.8b)
τ̂z|~rστ〉 = τ |~rστ〉 , (1.8c)

where ri ∈] − ∞,+∞[, σ = ±~/2 and τ = ±~/2 are eigenvalues of r̂i, ŝz and τ̂z,
respectively. To be coherent with the usual convention in particle physics, we assign
protons and neutrons to be eigenvector of τ̂z with eigenvalue τ = ~/2 and τ = −~/2,
respectively. As for the spin and isospin part, a shorthand notation is used as in fact
|σ〉 ≡ |1/2σ〉 and |τ〉 ≡ |1/2 τ〉.

3. The dynamical evolution of a state is governed by the time-dependent Schrödinger
equation2

i~
∂

∂t
|ψ〉 = h|ψ〉 , (1.9)

1The Kronecker symbol δij is equal to one if both indices are the same and zero otherwise. The Levi-Civita
symbol εijk is zero if at least two of its three indices are identical, otherwise it is equal to the signature of
the permutation that maps {i, j, k} onto {1, 2, 3}.

2From here on, hats on operators are omitted.
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where h is the Hamilton operator acting on H1

h = t+ v = ~p 2

2m + v(~r, ~p,~s, ~τ) , (1.10)

and where t and v denote the kinetic and potential energy of the particle, respectively.

4. The probability interpretation of the wave function stipulates that

|〈~rστ |ψ〉|2 ≡ |ψ(~rστ)|2 (1.11)

corresponds to the probability to find a nucleon at position ~r with spin projection σ
and isospin projection τ .

5. The postulate of reduction of the wave-packet following a measure states that, given
an observable associated with the self-adjoint operator A characterized by

A|φi〉 = Ai|φi〉 , (1.12)

and a state reading as
|ψ〉 =

∑
i

ci|φi〉 (1.13)

at the time of the measurement, the value Ak is measured with a probability |ck|2 and
the state collapses to |ψ〉 = |φk〉 as a result of the measurement.

1.1.2 Bases of H1

In actual many-body calculations, the first practical step is to make a choice of basis
B1 ≡ {|µ〉} of H1, where the index µ embodies the set of quantum numbers characterizing
single-particle basis states. Usually, there is an obvious choice to make, i.e. there exists
a one-body hermitian operator h whose orthonormal eigenbasis obtained by solving the
equation

h |µ〉 = εµ |µ〉 , (1.14)

is best suited to tackle the problem of interest.

Examples.

1. The hamiltonian of a nucleon in a translationally invariant system reads

h = ~p 2

2m + V (~p) , (1.15)

such that
|µ〉 ≡ |~pστ〉 , (1.16)

with

〈~rσ′τ ′|~pστ〉 ≡ ϕ~p(~r) δσσ′ δττ ′

= 1
(2π~)2/3 e

i
~ ~p·~r δσσ′ δττ ′ . (1.17)

In the case where the potential is a (possibly null) constant V (~p) = V0, the states |µ〉
are actually eigenvectors of the present hamiltonian.
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2. The hamiltonian of a one-dimensional harmonic oscillator reads as

h = p 2
x

2m + 1
2mω

2x2 , (1.18)

such that
|µ〉 ≡ |nστ〉 (1.19)

with

〈xσ′τ ′|nστ〉 ≡ ϕn(x) δσσ′ δττ ′

= 1√
2nn!

(mω
π~

)
Hn

(√
mω

~
x

)
e−

mω
2~ x

2
δσσ′ δττ ′ , (1.20)

where Hn denotes the Hermite polynomials.

1.2 Many-body quantum system

1.2.1 Extension of basic postulates
Having reviewed basic postulates of quantum mechanics for one-particle systems, let us
extend the discussion to a N -particle system, where the N particles are labeled from 1 to N .

1. The space of allowed states HN is given by the tensor product of the one-particle
Hilbert spaces associated with each of the N particles involved

HN (1, 2, . . . , N) ≡ H1(1)⊗H1(2)⊗ . . .⊗H1(N) , (1.21)

where H1(i) denotes the Hilbert space characterizing particle i.

2. The irreducible set of operators collects the irreducible sets of each of the N particles

~r1, ~p1, ~s1, ~τ1; . . . ;~rN , ~pN , ~sN , ~τN . (1.22)

The commutation rules of the operators extend naturally Eq. (1.7) at the price of
adding that operators associated with different particles commute.

3. The dynamical Schrödinger equation reads as

i~
∂

∂t
|Ψ〉 = H|Ψ〉 (1.23)

where H denotes the N -body Hamiltonian

H = T + V =
N∑
i=1

~p 2
i

2m + V (~r1, ~p1, ~s1, ~τ1; . . . ;~rN , ~pN , ~sN , ~τN ) , (1.24)

where T and V characterize kinetic- and potential-energy operators, respectively.

4. The probability interpretation of the wave function becomes

|〈1 : ~r1σ1τ1; . . . ;N : ~rNσNτN |Ψ〉|2 = |Ψ(~r1σ1τ1; . . . ;~rNσNτN )|2 (1.25)

and corresponds to the probability to find particles i ∈ J1, NK at position ~ri with spin
projection σi and isospin projection τi.

5. The postulate of reduction of the wave packet after a measurement extends naturally
from the one-body case.
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1.2.2 Bases of HN
Considering a basis B1 = {|α1〉} of the one-body Hilbert space H1(1), the direct product
basis of HN reads as

BN ≡ {|1 : α1; . . . ;N : αN 〉 ≡ |1 : α1〉 ⊗ . . . ⊗ |N : αN 〉} , (1.26)

where |1 : α1 ; . . . ;N : αN 〉 is the direct product of single-particle basis state |α1〉 for particle
1, . . . , and of single-particle basis state |αN 〉 for particle N .

Example. In general, one can expand |Ψ〉 ∈ HN as a linear combination of direct-product
basis states, i.e.

|Ψ〉 =
∑

α1...αN

Cα1...αN
|1 : α1〉 ⊗ . . . ⊗ |N : αN 〉 (1.27)

where Cα1...αN
denotes the coefficients of the linear combination. The particular case where

a single term appears in the sum

|Ψ〉 = |1 : α1〉 ⊗ . . . ⊗ |N : αN 〉 (1.28)

characterizes a (direct) product state that can be interpreted as the mere conjunction of N
one-body states. In general, it is however not possible to write |Ψ〉 as a product of one-body
states, i.e. |Ψ〉 is said to be entangled.

1.2.3 Operators
In Eq. (1.24), T is the sum of individual kinetic-energy operators and, as such, is said to be
a one-body operator. However, there exists operators that act on more than one particle at a
time. As such, a k-body operator (k ≤ N) is defined as an operator that can be decomposed
as a sum of operators each acting non trivially3 on k-body Hilbert sub-spaces of HN

Hk(i1, ..., ik) = H1(i1)⊗H1(i2)⊗ . . .⊗H1(ik) , (1.29)

with (i1, ..., ik) ∈ J1, NKk.
In Eq. (1.24) for example, the potential-energy operator V reads as a genuine N -body

operator as it can be decomposed as a sum of one term (itself) acting on HN , i.e. it acts non
trivially on each of the H1(i) at once. Most approximations, however, consist in considering
the potential energy to be a two-body operator or a sum of two- and three-body operators,
etc. Let us now characterize operators more precisely from the formal viewpoint.

One-body operator

A one-body operator F is defined via its action on a basis of HN with N ≥ 14

F : HN → HN
|1 : α; 2 : β; . . .〉 → F |1 : α; 2 : β; . . .〉

such that

F ≡
N∑
i=1

f(i) , (1.30)

where the sum runs over the N particles and where the operator f(i) acts on H1(i), i.e.

f(i) : H1(i) → H1(i)
|i : α〉 → f(i)|i : α〉 .

3Rigorously speaking, any operator defined on HN acts on all particles at once. However, if the operator
is proportional to the identity operator 11(i) on H1(i), it is said to be acting trivially on particle i.

4The action of a one-body operator on the particle vacuum provides the null vector, i.e. that F |0〉 = 0.
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Two-body operator

A two-body operator G is defined via its action on a basis of HN with N ≥ 25

G : HN → HN
|1 : α; 2 : β; . . .〉 → G|1 : α; 2 : β; . . .〉

such that

G ≡ 1
2

N∑
i 6=j=1

g(i, j) , (1.31)

where the sums run over the N particles and where the operator g(i, j) acts non-trivially on
H2(i, j) at once, i.e.

g(i, j) : H2(i, j) → H2(i, j)
|i : α; j : β〉 → g(i, j)|i : α; j : β〉 .

k-body operator

A k-body operator K is defined via its action on a basis of HN with N ≥ k6

K : HN → HN
|1 : α; 2 : β; . . .〉 → K|1 : α; 2 : β; . . .〉

such that

K ≡ 1
k!

N∑
i 6=j 6=...l=1

k(i, j, . . . l) , (1.32)

with (i, j, . . . l) ∈ J1, NKk such that the operator k(i, j, . . . l) acts non-trivially on Hk(i, j, . . . l)
at once, i.e.

k(i, j, . . . l) : Hk(i, j, . . . l) → Hk(i, j, . . . l)
|i : α; j : β; . . . ; l : δ〉 → k(i, j, . . . l)|i : α; j : β; . . . ; l : δ〉 .

1.2.4 Operator representations
Practically speaking, a k-body operator is defined in a chosen representation, i.e. through
the given of the set of its matrix elements in a given basis Bk of Hk.

One-body operator

A one-body operator f(1) acting on H1(1) is typically defined by the given of its complete
set of its matrix elements in basis, e.g., B1(1) = {|1 : ~rστ〉}

[f(1),B1(1)] → 〈1 : ~rστ |f(1)|1 : ~r ′σ′τ ′〉 .

With this definition at hand, one may be interested in representing the operator in a different
basis B1′(1) = {|1 : µ〉}, i.e. in computing the set of matrix elements 〈1 : α|f(1)|1 : β〉.
Typical basis of interest are the momentum basis or the harmonic oscillator basis introduced

5The action of a two-body operator on states of H0 or H1 provides the null vector.
6The action of a k-body operator on states of HN with N < k provides the null vector.
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in Sec. 1.1.2. To do so, one inserts twice the completeness relation on H1(1) associated with
basis B1(1) = {|1 : ~rστ〉}

11 ≡
∫
d~r
∑
στ

|1 : ~rστ〉〈1 : ~rστ | , (1.33)

to obtain the wanted matrix elements in terms of the originally given ones

〈1 : α|f(1)|1 : β〉 =
∫∫

d~r1d~r1′

∑
στ

∑
σ′τ ′

〈1 : α|~r1στ〉 〈1 : ~r1στ |f(1)|~r1′σ′τ ′〉 〈1 : ~r1′σ′τ ′|1 : β〉

=
∫∫

d~r1d~r1′

∑
στ

∑
σ′τ ′

ϕ∗α(~r1στ) f(~r1, σ, τ ;~r1′σ′τ ′)ϕβ(~r1′σ′τ ′) , (1.34)

where the notation f(~r, σ, τ ;~r ′σ′τ ′) ≡ 〈1 : ~rστ |f(1)|1 : ~r ′σ′τ ′〉 has been introduced.
Quite often, the operator acts non-trivially only on spatial coordinates, i.e. the operator

is spin- and isospin-independent. In this situation, the operator acting on H1 writes formally
as

f(1) = fspace(1)⊗ 11spin(1)⊗ 11isospin(1) , (1.35)

such that its matrix elements in basis B1(1) = {|1 : ~rστ〉} reduce to

〈1 : ~r1στ |f(1)|~r1′σ′τ ′〉 ≡ 〈1 : ~r1|fspace(1)|1 : ~r1′〉 〈1 : σ|1 : σ′〉 〈1 : τ |1 : τ ′〉
≡ f(~r1;~r1′) δσσ′ δττ ′ . (1.36)

Consequently, the matrix elements in basis B1′(1) = {|1 : µ〉} are obtained as

〈1 : α|f(1)|1 : β〉 =
∫∫

d~r1d~r1′

∑
στ

ϕ∗α(~r1στ) f(~r1;~r1′)ϕβ(~r1′στ) . (1.37)

Further considering that the operator is local in space

f(~r1;~r1′) ≡ f(~r1) δ(~r1 − ~r1′) , (1.38)

the computation of the matrix elements in basis B1′ = {|µ〉} reduces to the standard
expression involving a single (triple) integral

〈1 : α|f(1)|1 : β〉 =
∫
d~r1

∑
στ

ϕ∗α(~r1στ) f(~r1)ϕβ(~r1στ) . (1.39)

Example. An example of spin- and isospin-independent local one-body operator is given
by the kinetic energy of a fermion of mass m, whose expression in terms of the momentum
operator is

t(1) ≡ ~p 2(1)
2m ⊗ 11spin

(1)⊗ 11isospin
(1) . (1.40)

Given the representation of the operator ~p in the position basis given by Eq. (1.4b), the one
of t(1) is obtained by inserting a completeness relation in basis B1 = {|~rστ〉} such that

〈1 : ~rστ |t(1)|1 : ~r ′σ′τ ′〉 = 1
2m

∫
d~r1

∑
σ1τ1

〈1 : ~rστ |~p(1)|1 : ~r1σ1τ1〉〈1 : ~r1σ1τ1|~p(1)|1 : ~r ′σ′τ ′〉

= − ~2

2m

∫
d~r1

∑
σ1τ1

δ(~r − ~r1) δσσ1 δττ1
~∇~r δ(~r1 − ~r ′) δσ1σ′ δτ1τ ′ ~∇~r ′

= − ~2

2mδ(~r − ~r ′) δσσ′ δττ ′∆ , (1.41)
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which specifies Eqs. (1.38) and (1.38) for the operator of interest. With this representation
at hand, the matrix elements of the kinetic energy operator in an arbitrary basis B1′ = {|µ〉}
read, according to Eq. (1.39), as

〈1 : α|t(1)|1 : β〉 = − ~2

2m

∫
d~r
∑
στ

ϕ∗α(~rστ) ∆ϕβ(~rστ)

= + ~2

2m

∫
d~r
∑
στ

~∇ϕ∗α(~rστ) · ~∇ϕβ(~rστ) , (1.42)

where the last line was obtained via an integration by parts.

Two-body operator

A two-body operator g(1, 2) acting on H2(1, 2) is typically defined by the given of its complete
set of its matrix elements in the direct-product basis B2(1, 2) = {|1 : ~r1σ1τ1; 2 : ~r2σ2τ2〉}

[g(1, 2),B2(1, 2)] → 〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|g(1, 2)|1 : ~r1′σ1′τ1′ ; 2 : ~r2′σ2′τ2′〉 .

With this definition at hand, and following the same steps as for one-body operators, matrix
elements of g(1, 2) in basis B2′(1, 2) = {|1 : µ, 2 : ν〉} read as

〈1 : α; 2 : β|g(1, 2)|1 : γ; 2 : δ〉 =
∫∫∫∫

d~r1d~r2d~r1′d~r2′

∑
σ1σ2
σ1′σ2′

∑
τ1τ2
τ1′τ2′

ϕ∗α(~r1σ1τ1)ϕ∗β(~r2σ2τ2)

× g(~r1, σ1, τ1, ~r2, σ2, τ2;~r1′ , σ1′ , τ1′ , ~r2′ , σ2′ , τ2′)

× ϕγ(~r1′σ1′τ1′)ϕδ(~r2′σ2′τ2′) , (1.43)

where the notation

g(~r1, σ1, τ1, ~r2, σ2, τ2;~r1′ , σ1′ , τ1′ , ~r2′ , σ2′ , τ2′) ≡ 〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|g(1, 2)|1 : ~r1′σ1′τ1′ ; 2 : ~r2′σ2′τ2′〉

has been introduced.
Further considering a spin- and isospin-independent local two-body operator

g(1, 2) = gspace(1, 2)⊗ 12spin(1, 2)⊗ 12isospin(1, 2) , (1.44)

whose matrix elements in basis B2(1, 2) = {|1 : ~r1σ1τ1; 2 : ~r2σ2τ2〉} take the simpler form

〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|g(1, 2)|1 : ~r1′σ1′τ1′ ; 2 : ~r2′σ2′τ2′〉 ≡ g(~r1, ~r2) (1.45)
× δ(~r1 − ~r1′) δσ1σ1′ δτ1τ1′

× δ(~r2 − ~r2′) δσ2σ2′ δτ2τ2′ ,

the expression of the matrix elements reduces to

〈1 : α; 2 : β|g(1, 2)|1 : γ; 2 : δ〉 =
∫∫

d~r1d~r2
∑
σ1σ2

∑
τ1τ2

ϕ∗α(~r1σ1τ1)ϕ∗β(~r2σ2τ2)

× g(~r1, ~r2)
× ϕγ(~r1σ1τ1)ϕδ(~r2σ2τ2) . (1.46)

Example. An example of local, spin-independent, isospin-dependent two-body operator is
given by the Coulomb interaction Vc(1, 2) between two nucleons (of charge 0 for neutrons
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and e for protrons). The matrix elements of Vc(1, 2) in position basis reads

Vc(~r1, σ1, τ1, ~r2, σ2, τ2) ≡ 〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|Vc(1, 2)|1 : ~r1′σ1′τ1′ ; 2 : ~r2′σ2′τ2′〉

= e2

~2
(τ1 + ~

2 )(τ2 + ~
2 )

|~r1 − ~r2|
δ(~r1 − ~r1′) δσ1σ1′ δτ1τ1′ (1.47)

× δ(~r2 − ~r2′) δσ2σ2′ δτ2τ2′ .

In the abritary basis B2′(1, 2) = {|1 : µ, 2 : ν〉}, the matrix elements are then easily obtained
by inserting Eq. (1.47) into Eq. (1.43)

〈1 : α; 2 : β|Vc(1, 2)|1 : γ; 2 : δ〉 =
∫∫

d~r1d~r2
∑
σ1σ2

∑
τ1τ2

ϕ∗α(~r1σ1τ1)ϕ∗β(~r2σ2τ2)

× e2

~2
(τ1 + ~

2 )(τ2 + ~
2 )

|~r1 − ~r2|
ϕγ(~r1σ1τ1)ϕδ(~r2σ2τ2) .

(1.48)

k-body operator

The above considerations are easily extended to the representation of a k-body operator on
a basis Bk of Hk.

1.2.5 Identical particles
In the case of N identical particles7, not all states of HN are in fact physically allowed
states. This feature leads to the necessity to add two postulates that apply differently to
particles carrying an integer spin (γ, Z0, H, etc), and those carrying an a half-integer spin
(protons, neutrons, quarks, etc). Particles belonging to the first category are denoted as
Bosons whereas those belonging to the second category are denoted as Fermions.

In order to formulate the additional postulates, it is necessary to introduce the notion
of permutations of N elements as well as to define symmetrization and antisymmetrization
operators.

Symmetric group

The permutations of N elements form the symmetric group whose basic properties are now
listed.

1. The group contains N ! elements p called permutations of (1, 2, . . . , N). The set of
permutations is denoted as P.

2. Any permutation p ∈ P can be decomposed as a product of elementary transpositions
tij defined through

tij(i) = j ; tij(j) = i ; tij(k) = k if k 6= i, j . (1.49)

For example, the permutation8 p: (1, 2, 3)→ (3, 1, 2) can be written as p = t23t13.

3. One associates a number πp = ±1 to each permutation p ∈ P, called the signature of
the permutation, such that

πpp′ = πpπp′ ,

πId = +1 ,
πtij

= −1 .

7By identical particles, we mean here particles carrying the same intrinsic quantum numbers, e.g. mass,
charge, spin, isospin.

8This permutation is a cycle.
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Given the set of permutation P , N ! operators Pp are defined on HN through their action on
the basis states

Pp|1 : α1; . . . ;N : αN 〉 ≡ |1 : αp(1); . . . ;N : αp(N)〉 (1.50a)
≡ |p(1) : α1; . . . ; p(N) : αN 〉 , (1.50b)

where the permutation can equally act on particle or single-particle labels. The first case of
particular interest concerns the identity whose associated operator reads as PId = 1N . The
second case of particular interest relates to operators associated with transpositions whose
traditional short-hand notation is given by Pij ≡ Ptij

and whose action reads as

Pij |1 : α1 ; . . . ; i : αi ; . . . ; j : αj ; . . .〉 = |1 : α1 ; . . . ; i : αj ; . . . ; j : αi ; . . .〉 . (1.51)

Permutation operators are unitary, verify PpPp′ = Ppp′ but are a priori not hermitian. As
for the particular case of transpositions, one has

P 2
ij = 1 , (1.52a)

P †ij = Pij . (1.52b)

Symmetrization and antisymmetrization operators

One introduces symmetrization and antisymmetrization operators acting on HN and respec-
tively defined through

S ≡ 1
N !
∑
p∈P

Pp , (1.53a)

A ≡ 1
N !
∑
p∈P

πpPp , (1.53b)

whose main properties are9

1. S† = S and A† = A,

2. PpS = S and PpA = πpA,

3. S2 = S and A2 = A,

4. SA = AS = 0.

Examples. For N = 2, one finds that

S ≡ 1
2(12 + P12) , (1.54a)

A ≡ 1
2(12 − P12) , (1.54b)

whereas for N = 3 the expressions of S and A in terms of transposition operators are

S ≡ 1
6(13 + P12 + P13 + P23 + P12P13 + P12P23) , (1.55a)

A ≡ 1
6(13 − P12 − P13 − P23 + P12P13 + P12P23) . (1.55b)

9Although S and A are orthogonal projectors, it must not be concluded that their associated subspaces
(onto which they project) are necessarily in direct sum. Indeed, except for N = 2, one does not have
S +A = 1N .
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Additional postulates

6. The N -body Hilbert space HN must be reduced to the subspace of physically accessible
states HBN or HFN , i.e. the subspace of totally symmetric or totally antisymmetric
states under the exchange of any two particles, respectively. In the following, we
limit ourselves to considering fermions. A basis BFN of HFN is made of normalized and
fully antisymmetric product states (i.e. Slater determinants) of HN obtained from
direct-product states through the action of the antisymmetrizer

|α1 . . . αN 〉 ≡
√
N !A|1 : α1 ; . . . ;N : αN 〉 (1.56a)

= 1√
N !

∑
p∈P

πp |p(1) : α1 ; . . . ; p(N) : αN 〉 (1.56b)

= 1√
N !

∣∣∣∣∣∣∣
|1 : α1〉 . . . |N : α1〉

...
. . .

...
|1 : αN 〉 . . . |N : αN 〉

∣∣∣∣∣∣∣ , (1.56c)

where the last line testifies that the antisymmetrized many-body state can be written
under the form of a determinant, hence the denomination as a Slater determinant. The
Slater determinant |Φ〉 ≡ |α1 . . . αN 〉 is antisymmetric under the exchange of any pair
of particles (or equivalently of any pair of single-particle states)

Pij |Φ〉 = −|Φ〉 . (1.57)

which is obvious given that the determinant is antisymmetric under the exchange of
two columns or of two rows (corresponding respectively to an exchange of two particles
or two single-particle states). As a result of the antisymmetrization, and by opposition
to direct-product states (Eq. (1.26)), it is not possible anymore to state that particle
1 is occupying single-particle state |α1〉, that particle 2 is occupying single-particle
state |α2〉 etc in state |Φ〉. Therefore, there exist intrinsic correlations between the
N particles, even though they are minimal for a Slater determinant as they are the
fingerprint of the sole Pauli exclusion principle.
The many-body wave function also takes the form of a determinant of the N occupied
single-particle wave functions

〈1 : ~r1σ1τ1; . . . ;N : ~rNσNτN |α1 . . . αN 〉 ≡ Φα1...αN
(~r1σ1τ1; . . . ;~rNσNτN ) (1.58)

= 1√
N !

∣∣∣∣∣∣∣
ψα1(~r1σ1τ1) . . . ψα1(~rNσNτN )

...
. . .

...
ψαN

(~r1σ1τ1) . . . ψαN
(~rNσNτN )

∣∣∣∣∣∣∣
which can be compared to the one associated with the direct-product state in the
absence of antisymmetrization that was given by

〈1 : ~r1σ1τ1; . . . ;N : ~rNσNτN |1 : α1; . . . ;N : αN 〉 =
N∏
i=1

ψαi
(~riσiτi) . (1.59)

Example. For N = 2, the wave function associated with a Slater determinant is

Φα1α2(~r1σ1τ1;~r2σ2τ2) ≡ 〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|α1α2〉

= 〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|
√

2!A|1 : α1 ; 2 : α2〉

= 1√
2

∣∣∣∣ ψα1(~r1σ1τ1) ψα1(~r2σ2τ2)
ψα2(~r1σ1τ1) ψα2(~r2σ2τ2)

∣∣∣∣
= 1√

2
[
ψα1(~r1σ1τ1)ψα2(~r2σ2τ2)

− ψα2(~r1σ1τ1)ψα1(~r2σ2τ2)
]
, (1.60)
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which should be compared to

〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|1 : α1; 2 : α2〉 = ψα1(~r1σ1τ1)ψα2(~r2σ2τ2) . (1.61)

The antisymmetric two-body wave function computed in Eq. (1.60) is indeed normalized

〈α1α2|α1α2〉 =
∑
σ1σ2

∑
τ1τ2

∫ ∫
d~r1d~r2|Φα1α2(~r1σ1τ1;~r2σ2τ2)|2

= 1
2

[∑
σ1τ1

∫
d~r1|ψα1(~r1σ1τ1)|2

∑
σ2τ2

∫
d~r2|ψα2(~r2σ2τ2)|2

+
∑
σ1τ1

∫
d~r1|ψα2(~r1σ1τ1)|2

∑
σ2τ2

∫
d~r2|ψα1(~r2σ2τ2)|2

]
= 1 ,

where the orthonormalization of one-body wave functions was used after having inserted
the completeness on H2

12 =
∑
σ1σ2

∑
τ1τ2

∫ ∫
d~r1d~r2 |1 : ~r1σ1τ1; 2 : ~r2σ2τ2〉〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2|

in the original overlap.

7. Considering identical particles also reduces the space of allowed operators that must
be symmetric under the exchange of any pair of particles, i.e.

∀(i, j) ∈ J1, NK2 V (1, . . . , i, . . . , j, . . . , N) = V (1, . . . , j, . . . , i, . . . , N) . (1.62)

Examples. The potential of two identical particles has to satisfy

V (1, 2) = V (2, 1) . (1.63)

Similarly a three-body operator should satisfy

V = V (1, 2, 3) = V (1, 3, 2) = V (2, 1, 3) = V (2, 3, 1) = V (3, 2, 1) = V (3, 1, 2) . (1.64)

Therefore any three-body operator V can be written as

V ≡ V123

= 1
6
(
V (1, 2, 3) + V (2, 1, 3) + V (1, 3, 2) + V (3, 1, 2) + V (3, 2, 1) + V (2, 3, 1)

)
= 1

3

(
V (1, 2, 3) + V (2, 1, 3)

2 + V (1, 3, 2) + V (3, 1, 2)
2 + V (3, 2, 1) + V (2, 3, 1)

2

)
= 1

3(V123 + V132 + V231) , (1.65)

where 123 means that the potential is symmetric under any exchange of particles 1, 2 and 3,
whereas 123 means that it is symmetrized under the exchange of 1 and 2 only. Two of the
three terms can be rewritten in terms of the third one and of permutation operators for two
particles such that

V = 1
3(V123 + P23P12V123P12P23 + P13P12V123P12P13) . (1.66)

Equation (1.66) demonstrates that a three-body operator is fully specified through the sole
given of V123.
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1.3 One-nucleon states

1.3.1 Eigenbasis of position
Let us recall direct-product states |~rστ〉 ≡ |~r〉 ⊗ |σ〉 ⊗ |τ〉 defined such that10

~r |~rστ〉 = ~r |~rστ〉 , (1.67)

~s 2 |~rστ〉 = 1
2

(1
2 + 1

)
|~rστ〉 , sz|~rστ〉 = σ |~rστ〉 , (1.68)

~τ 2 |~rστ〉 = 1
2

(1
2 + 1

)
|~rστ〉 , τz|~rσq〉 = τ |~rσq〉 , (1.69)

constitute a complete continuous orthonormal basis of H1 = H1,~r ⊗H1,~s ⊗H1,~τ with ~r ∈ R3

and σ, τ ∈ {+1/2,−1/2}11.
The orthogonality and completeness relations can be written as

〈~rστ |~r ′σ′τ ′〉 = δ(~r − ~r ′) δσσ′ δττ ′ ,

∫
d~r
∑
σ

∑
τ

|~rστ〉〈~rστ | = 11 , (1.70)

where 11 is the unity operator on H1.

1.3.2 Eigenbasis of linear momentum
Direct-product states |~pστ〉 ≡ |~p〉 ⊗ |σ〉 ⊗ |τ〉 made out of eigenstates of the momentum
operator ~p = −i~−→∇ , sz and τz also constitute a basis of H1. The relationship between such
states and the previous basis is given by

〈~rστ |~pσ′τ ′〉 = e
i
~~r·~p

(2π)3/2 δσσ′ δττ ′ . (1.71)

1.3.3 Eigenbasis of orbital angular momentum
The orbital angular-momentum operator is defined as ~l ≡ ~r× ~p. It is hermitian since ~r and ~p
are hermitian. The orbital angular-momentum components follow the commutation relations

[li, lj ] = i~
∑
k

εijk lk , (1.72)

which derive from those fulfilled by ~r and ~p. One can easily show that l2 commute with each
components li of ~l. One can thus introduce the eigenstates |lml〉 of ~l 2 and lz such that

~l 2|lml〉 = ~2 l(l + 1) |lml〉, lz|lml〉 = ~ml |lml〉 , (1.73)

where l ∈ N and ml ∈ Z such that |ml| ≤ l. In spherical coordinates, |~r〉 ≡ |rθϕ〉 with
r = ‖~r‖, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, it is possible to check that l acts only on angular coordinates
(θ, ϕ). The spherical harmonics

Y ml

l (θ, ϕ) ≡ 〈θϕ|lml〉 , (1.74)

are the wave functions associated with |lml〉 in this space and one has

|lml〉 =
∫ π

0
dθ sin θ

∫ 2π

0
dϕ |θϕ〉Y ml

l (θ, ϕ) .

10For some of the operators, e.g. ~r, we denote the operator and the associated quantum numbers in the
same way. This should not be too confusing.

11Throughout the lecture series, the quantum number τ is sometimes referred to as a letter, i.e. n for
neutrons and p for protons, or as a number, i.e. +1/2 for protons and −1/2 for neutrons.
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1.3.4 Eigenbasis of total angular momentum
The total angular momentum operator of a nucleon is ~j ≡ ~l + ~s. The components of ~j obey
to the same commutation relationships than ~l and ~s. One can define eigenstates |(l1/2)jm〉
common to ~l 2, ~s 2, ~j 2 and jz, because these four operators commute with each other, and
write

~l 2 |(l1/2)jm〉 = ~2l(l + 1) |(l1/2)jm〉 , (1.75)

~s 2 |(l1/2)jm〉 = 3
4~

2 |(l1/2)jm〉 , (1.76)

~j 2 |(l1/2)jm〉 = ~2j(j + 1) |(l1/2)jm〉, jz|(l1/2)jm〉 = ~m |(l1/2)jm〉 , (1.77)

where 2j ∈ N∗ and 2m ∈ Z such that |m| ≤ j. Such eigenstates can be expressed by a linear
combination of the direct-product states |lml1/2σ〉 ≡ |lml〉 ⊗ |1/2σ〉

|(l1/2)jm〉 =
∑
mlσ

|lml1/2σ〉〈l1/2mlσ|jm〉 , (1.78)

where 〈l1/2mlσ|jm〉 are the so-called Clebsch-Gordan coefficients. Equation (1.78) is impor-
tant because it shows how to add angular momentum operators ~l and ~s. The operator ~j acts
on both spatial and spin coordinates such that the wave function associated with |(l1/2)jm〉
is a spin-angular spherical harmonics that reads in spherical and spin coordinates as

〈θϕσ′|(l1/2)jm〉 ≡ Y(l1/2)jm(θ, ϕ, σ′) =
∑
mlσ

〈l1/2mlσ|jm〉Y ml

l (θ, ϕ)χσ1/2(σ′) , (1.79)

where χσ1/2(σ′) ≡ 〈1/2σ′|1/2σ〉 = δσ′σ is the wave function of the state of spin σ. The most
general wave function of a nucleon of isospin τ can be expanded using the complete set of
spin-angular spherical harmonics according to

ψτ ′(r, θ, ϕ, σ, τ) =
∑
ljm

fljmτ ′(r)Y(l1/2)jm(θ, ϕ, σ)χτ
′

1/2(τ) , (1.80)

where χτ ′

1/2(τ) ≡ 〈1/2τ |1/2τ〉 = δττ ′ is the wave function of the state of isospin τ ′.

1.4 Two-nucleon states

1.4.1 Eigenbases of position and linear momentum
The two-nucleon Hilbert space H2 is the tensor product H2 ≡ H1(1) ⊗H1(2) of two one-
nucleon Hilbert spaces. Starting from the direct-product bases of H1 introduced in Secs. 1.3.1
and 1.3.2, one obtains direct-product bases of H2

|1 : ~r1σ1τ1 ; 2 : ~r2σ2τ2〉 ≡ |1 : ~r1σ1τ1〉 ⊗ |2 : ~r2σ2τ2〉 , (1.81)

and similarly for |1 : ~p1σ1τ1 ; 2 : ~p2σ2τ2〉.

Completeness relation

The completeness relation on the two-body Hilbert space H2

12 =
∫ ∫

d~r1d~r2
∑
σ1σ2

∑
τ1τ2

|1 : ~r1σ1τ1; 2 : ~r2σ2τ2〉〈1 : ~r1σ1τ1; 2 : ~r2σ2τ2| . (1.82)

where 12 is the unity operator on H2.
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Antisymmetrized basis

If one aims at working with fermions, the Hilbert space of physically accessible states one
is really dealing with is the subspace of H2 of antisymmetric states under the exchange of
particles 1 and 2. Bases of such a subspace are obtained by applying the antisymmetrization
operator A12 = I−P12, where P12 is the two-body exchange operator, onto the direct-product
states

|~r1σ1τ1 ;~r2σ2τ2〉 =
√

2A12|1 : ~r1σ1τ1 ; 2 : ~r2σ2τ2〉

= 1√
2

[
|1 : ~r1σ1τ1 ; 2 : ~r2σ2τ2〉 − |1 : ~r2σ2τ2 ; 2 : ~r1σ1τ1〉

]
, (1.83)

and similarly for |~p1σ1τ1 ; ~p2σ2τ2〉. A crucial point is that the states defined through Eq. 1.83
are globally antisymmetric under the exchange of space, spin and isospin coordinates but do
not have specific properties under the exchange of only spatial, spin or isospin coordinates.
It is sometimes preferred to build antisymmetric two-body states out of the tensor product
of two-body spatial, spin and isospin states that each has specific properties, i.e. symmetric
or antisymmetric, under the exchange of the two particles. Such a building of antisymmetric
two-body states is different from what has been done above and is discussed in the remaining
of the present notes.

Centre of mass decoupling

Assuming that both nucleons have the same mass, one introduces relative and center of mass
coordinates through

~R ≡ ~r1 + ~r2

2 , ~r ≡ ~r1 − ~r2 , ~P ≡ ~p1 + ~p2 , ~p ≡ ~p1 − ~p2

2 , (1.84)

such that, in the center-of-mass frame, the spatial part of the direct-product state can be
written as |1 : ~r1 ; 2 : ~r2〉 ≡ |~R~r〉. Considering that the nuclear interaction only depends on
the relative position vector ~r and rewriting the kinetic energy operator as

T ≡ ~p 2
1

2m + ~p 2
2

2m =
~P 2

4m + ~p 2

m
=

~P 2

4m + ~p 2

2µ , (1.85)

where µ = m/2 denotes the reduced mass of the two-body system, one recovers the standard
result that the center of mass motion decouples and that the relative motion of the two-
nucleon system reduces to the motion of a fictitious one-body system of mass µ. Being only
interested in the relative motion of the nucleons, we can thus omit the motion associated
with the coordinate ~R as is assumed in the following.

1.4.2 Eigenbasis of orbital angular momentum
The total orbital angular-momentum of the two-body system is defined as ~Ltot ≡ ~l1 +~l2 with
~l1 = ~r1 × ~p1, ~l2 = ~r2 × ~p2. Using Eq. (1.84), one finds that ~Ltot ≡ ~Lcom + ~L where

~Lcom ≡ ~R× ~P , ~L ≡ ~r × ~p . (1.86)

~Lcom is the center-of-mass orbital angular-momentum whereas ~L is the relative orbital
angular-momentum of the two nucleons. In the center-of-mass frame, ~Lcom is null such that
the orbital angular-momentum reduces to ~L. The operator ~L possesses all properties of an
angular momentum, e.g. standard commutation relations, and leads to the introduction
of the basis |LML〉 that happens to be convenient to describe the relative motion one is
interested in. The corresponding wave functions are

YML

L (θ, ϕ) ≡ 〈θϕ|LML〉 , (1.87)
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where angles θ and ϕ provide the orientation of the relative position vector ~r. When the two
nucleons are exchanged, ~r = ~r1 − ~r2 is changed into −~r, which is equivalent to changing θ
and ϕ into π − θ and ϕ+ π. As YML

L (π − θ, ϕ+ π) = (−1)L YML

L (θ, ϕ), the exchange of the
two particles introduces a phase equal to (−1)L. Consequently, one sees that a state |LML〉
with L even is symmetric under the exchange of the two particles whereas a state with an
odd L is antisymmetric under such an exchange. Such a property makes the basis |LML〉 of
H2,~r very suited to the construction of fully antisymmetrized states down the road.

1.4.3 Eigenbasis of spin
The two-nucleon spin operator is ~S = ~s1 +~s2. Eigenstates |SMS〉 of ~S2 and Sz are expressed
in terms of the direct-product states |1 : σ1 ; 2 : σ2〉 as

|0 0〉 = |1 :↑ 2 :↓〉 − |1 :↓ 2 :↑〉√
2

, (1.88)

|1 1〉 = |1 :↑ 2 :↑〉 , (1.89)

|1 0〉 = |1 :↑ 2 :↓〉+ |1 :↓ 2 :↑〉√
2

, (1.90)

|1 −1〉 = |1 :↓ 2 :↓〉 , (1.91)

whose eigenvalues ~2 S(S + 1) and MS of ~S2 and of Sz, respectively, take the values S = 0 or
1 and |MS | ≤ S. As is customary, "spin-up" and "spin down" arrows have been used to denote
σ = +1/2 and σ = −1/2, respectively. The S = 0, or spin-singlet, state is antisymmetric
under the exchange of particles 1 and 2 while S = 1, or spin-triplet, states are symmetric.
One can define the spin-exchange operator Pσ through

Pσ = ~S2 − 1 ≡ 1 + ~s1 · ~s2

2 , (1.92)

such that Pσ|1 : σ1 ; 2 : σ2〉 = |1 : σ2 ; 2 : σ1〉 and Pσ|SMS〉 = (−1)1−S |SMS〉, i.e.
Pσ|00〉 = −|00〉 and Pσ|1MS〉 = +|1MS〉.

1.4.4 Eigenbasis of isospin
The two-nucleon isospin operator is ~T = ~τ1 +~τ2. Noting ~2 T (T + 1) and MT the eigenvalues
of ~T 2 and of Tz, respectively, one has T = 0 or 1 and |MT | ≤ T . Eigenstates |TMT 〉 of ~T 2

and Tz are expressed in terms of the direct-product states |1 : τ1 ; 2 : τ2〉 as

|0 0〉 = |1 : n 2 : p〉 − |1 : p 2 : n〉√
2

, (1.93)

|1 1〉 = |1 : n 2 : n〉 , (1.94)

|1 0〉 = |1 : n 2 : p〉+ |1 : p 2 : n〉√
2

, (1.95)

|1 −1〉 = |1 : p 2 : p〉 , (1.96)

where n and p have been used to denote τ equal to +1/2 and −1/2, respectively. The T = 0,
or isospin-singlet, state is antisymmetric under the exchange of particles 1 and 2, while the
T = 1, or isospin-triplet, states are symmetric. One can define the isospin-exchange operator
Pτ through

Pτ = ~T 2 − 1 ≡ 1 + ~τ1 · ~τ2
2 , (1.97)

such that Pτ |1 : τ1 ; 2 : τ2〉 = |1 : τ2 ; 2 : τ1〉 and Pτ |TMT 〉 = (−1)1−T |T MT 〉, i.e.
Pτ |00〉 = −|00〉 and Pτ |1MT 〉 = +|1MT 〉.
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1.4.5 Eigenbasis of total angular momentum
In the center-of-mass frame, one can couple the relative orbital angular-momentum ~L and
the total spin ~S to form the total angular-momentum ~J = ~L+ ~S. Doing so, one introduces
the basis of H2,~r ⊗H2,~s

|(LS)JM〉 =
∑

MLMS

〈L S ML MS |JM〉|LML〉|SMS〉 , (1.98)

whose wave function is a spin-angular spherical harmonics Y(L S)JM (θ, ϕ, σ) and which are
eigenstates of ~J 2 and Jz with eigenvalues ~2J(J + 1) and ~M , respectively. Thanks to
the angular momentum coupling rules, one has |L− S| ≤ J ≤ L+ S and M = ML +MS .
Ordering the two-nucleon states according to J , one has |J − S| ≤ L ≤ J + S, such that

for J = 0 L = S

{
if S = 0 : L = 0
if S = 1 : L = 1

for J > 0 L = J − S, J, J + S

{
if S = 0 : L = J
if S = 1 : L = J − 1, J, J + 1 .

(1.99)

Consequently, J=0 gives rise to a spin-singlet state S=L=0 and to a spin-triplet state
S=L=1, whereas for J>0 there exists a spin-singlet state S=0, L=J and three spin-triplet
states S=1, L=J-1, J , J+1.

Spectroscopic notation

To characterise such a spatial-spin content of the two-body state, one usually uses the spectro-
scopic notation (2S+1)[L]J where [L] denotes one of the letters S, P , D, F , . . . corresponding
to L = 0, L = 1, L = 2, L = 3, . . . partial waves, respectively. The two-nucleon states
obtained for the first few J values are thus denoted as

J = 0 : 1S0,
3P0

J = 1 : 1P1,
3S1,

3P1,
3D1

J = 2 : 1D2,
3P2,

3D2,
3F2

J = 3 : 1F3,
3D3,

3F3,
3G3 .

(1.100)

1.4.6 Spin-isospin channels
Finally, one obtains a complete basis of H2 through the tensor product of the basis |(LS)JM〉
of H2,~r⊗H2,~s and of the basis |TMT 〉 of H2,~τ . As already stated, two-fermion states must be
antisymmetric under the exchange of the two fermions. Summarizing the above discussion,
we see that such an exchange brings a phase (−1)S−1 for the spin part, (−1)T−1 for the
isospin part and (−1)L for the spatial part. To fulfill the overall antisymmetry, one must
thus have (−1)L+S−1+T−1 = −1, i.e. L+ S + T must be odd. In the listing of Eq. (1.100),
the two J = 0 states have an even value of L+ S, and thus have to be isospin-triplet (T = 1)
states. For J = 1 states, the first, second and fourth states have L+ S odd, and thus can
only be isospin-singlet (T = 0) states. The third state has L+ S even, and thus must be an
isospin-triplet T = 1 state. And so on and so forth.

It is customary to start classifying complete two-nucleon states according to S and T
quantum numbers. This gives birth to the four so-called spin-isospin channels

(S = 0, T = 0) , (S = 0, T = 1) , (S = 1, T = 0) , (S = 1, T = 1) , (1.101)

which are spin-singlet/isospin-singlet, spin-singlet/isospin-triplet, spin-triplet/isospin-singlet
and spin-triplet/isospin-triplet channels, respectively. Channels (S = 0, T = 0) and (S =
1, T = 1) must correspond to an odd L and are denoted as singlet-odd and triplet-odd
channels, respectively. Similarly, channels (S = 0, T = 1) and (S = 1, T = 0) must
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correspond to an even L and are denoted as singlet-even and triplet-even, taking the spin as
a reference. Using such a convention, two-nucleon states (Eq. (1.100)) are distributed within
the four channels according to

S T channel neutron/proton states J = 0 J = 1 J = 2 J = 3 J = 4
0 1 singlet even nn, pp, (np+pn)/

√
2 1S0

1D2
1G4

1 0 triplet even (np-pn)/
√

2 3S1 , 3D1
3D2

3D3 , 3G3
3G4

0 0 singlet odd (np-pn)/
√

2 1P1
1F3

1 1 triplet odd nn, pp, (np+pn)/
√

2 3P0
3P1

3P2 , 3F2
3F3

3F4 , 3H4

Parts of the array are empty, e.g. neither the singlet-even state with an odd J nor the
singlet-odd state with an even J are allowed.

The (S, T ) channel classification is useful because the nuclear interaction does not only
commute with ~S2 but also commutes, to a good approximation, with ~T 2. The latter represents
the charge independence of the nuclear force. Consequently, the nuclear interaction cannot
mix two-nucleon states that belong to different channels. However, the nuclear interaction
can be different in each channel such that there are four decoupled parts of the nuclear
interaction vST12 ; one for each channel. Experimental nucleon-nucleon scattering experiments
have confirmed such a feature.

It is often said that the charge independence of nuclear forces implies that the nuclear
interaction between two neutrons is the same as between two protons or between a neutron
and a proton. Such a statement is wrong. In fact, the interaction between two neutrons is
the same than the interaction between two protons or between one neutron and one proton
only if they occupy the same orbital and spin states, that is to say if they are in the same
channel. It is what is shown in the array. The identity between the proton-proton and
neutron-neutron forces in the T = 1 channel denotes the charge symmetry of the nuclear
force. However, the singlet-even channel interaction is not equal to the triplet-odd channel
interaction.

The interaction in even channels is attractive, while it is repulsive in odd channels .
Moreover, the interaction in the triplet even channel is more attractive than in the singlet
even channel. It is the proton-neutron interaction in the triplet even channel that binds the
deuteron, whereas there is no bound di-neutron or di-protons. In heavier nuclei, even channels
play an important role, e.g. the proton-neutron triplet even interaction plays an essential
role in binding nuclei while proton-proton and neutron-neutron singlet-even interactions are
responsible of pairing correlations and superfluid properties of nuclei.

Finally, let us note that, in the center-of-mass frame, the general form of the two-nucleon
wave-function is similar to the one-body wave function Eq. (1.80) with mass µ = m/2

ψ(r, θ, ϕ,MS ,MT ′) =
∑
LSJM

∑
TMT

fJMLSTMT
(r)Y(LS)JM (θ, ϕ,MS)χMT

T (MT ′) , (1.102)

where χMT

T (MT ′) ≡ 〈TMT ′ |TMT 〉 = δMT ′MT
. Thanks to nuclear interaction symmetries,

the wave function has to be a eigenstate of ~J2, Jz, ~S2, ~T 2, Tz and of the parity Π. In this
case, Eq. (1.102) becomes

ψJMΠ
STMT

(r, θ, ϕ,MS ,MT ) =
∑

L : (−)L=Π

fJLST (r)Y(LS)JM (θ, ϕ,MS)χMT

T (MT ) . (1.103)
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