From nuclei to stars Theoretical course

NPAC 2020-2021

Mid-term exam 5/11/2020

- 1. What is a Slater determinant and which properties of N-fermion states can be deduced from the fact that it can be expressed as a matrix determinant?
- 2. For each of the five possible operator types in the nucleon-nucleon interaction
 - a) 1 b) $\vec{L} \cdot \vec{S}$ c) $S_{12}^{(r)} \equiv 3(\vec{\sigma}_1 \cdot \vec{r})(\vec{\sigma}_2 \cdot \vec{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$, with $\vec{r} \equiv \frac{\vec{r}}{|\vec{r}|}$ d) $S_{12}^{(p)} \equiv 3(\vec{\sigma}_1 \cdot \vec{p})(\vec{\sigma}_2 \cdot \vec{p}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2$, with $\vec{p} \equiv \frac{\vec{p}}{|\vec{p}|}$ e) $Q_{12} \equiv \frac{1}{2} \left[(\vec{\sigma}_1 \cdot \vec{L})(\vec{\sigma}_2 \cdot \vec{L}) + (\vec{\sigma}_2 \cdot \vec{L})(\vec{\sigma}_1 \cdot \vec{L}) \right]$

determine whether the operator commutes (i) with \vec{S}^2 and (ii) with \vec{L}^2 , i.e. whether S and L are conserved by each of them.

Hint: For the tensor operators, use the relation $6(\vec{S} \cdot \bar{x})^2 - 2\vec{S}^2 = S_{12}^{(x)}$, where x = r, p.

Bonus: Prove the above relation (at some point you have to use the formula $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot \vec{a} \times \vec{b}$).

- 3. One between S and L is not conserved by some of the operators listed above. Which experimental observation confirms this result?
- 4. Nuclear interaction
 - a. What is Yukawa's model of nucleon-nucleon interaction and what is the logic behind it?
 - b. In which way one-boson-exchange (OBE) potentials improve on Yukawa's idea?
 - c. In which way models from effective field theory improve on OBE potentials?
- 5. What is the tetraneutron, why is it interesting to study it and why is it difficult to study it?
- 6. Let a_{\uparrow} and a_{\downarrow} be annihilation operators for states with $\sigma = +1/2$ and $\sigma = -1/2$ respectively, where σ is the eigenvalue of the third component of the spin operator, s_z (let us set $\hbar = 1$).
 - a. Given the operators

$$O_1 \equiv \frac{1}{2} [a_{\uparrow}^+ a_{\downarrow} + a_{\downarrow}^+ a_{\uparrow}]$$

and

$$O_2 \equiv \frac{1}{2i} [a_{\uparrow}^+ a_{\downarrow} - a_{\downarrow}^+ a_{\uparrow}]$$

compute their commutator.

b. Defining $[O_1, O_2] \equiv iO_3$, which physical operator does O_3 represent?

MID TERM EXAM

1) - farm a (complete orthonormal) basis of
$$f|_{N}^{+}$$

- exchange of two lives $-p$ - sign
- two equal lives $-p$ O farl:

-

$$\frac{2}{2} = \frac{1}{2} \left(\int_{-1}^{1} - \int_{-1}^{1} - \int_{-1}^{1} \int_{-1}^{1} - \int_{-1}^{1} \int_{-1}^{1} - \int_{-1}^{1} \int_$$

e) Q₁₂ -b function of L.S, (L.S), L²
=b counters with both
c,1)
$$G(\overline{S} \cdot \overline{x})^2 - 2\overline{S}^2$$
 =b counters with \overline{S}^2
b does not counter with $\underline{\Gamma}^2$ use $\overline{L} \cdot \overline{v} \cdot \overline{p}$
=b $[\sqrt{1}, \overline{\underline{L}}^2] \neq 0$ =b $\overline{\underline{L}}^2$ is not conserved
3) From the magnetic dipole moment of the
durteron (consistent only with a combination

$$f = 0 \quad and \quad \underline{l} = 2$$

