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Introduction

or: why spending 3 hours to do maths ?

● Use of statistics in HEP is a very broad topic 
○ There are complete courses on the topic 
○ See bibliography / references 

 
● Goals of today’s lecture: 

○ Teach / remind some basic notions 
○ Focus on aspects used nowadays in the majority of 

BSM searches at the LHC 
○ Understand the main plots often shown in 

searches or measurements  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Outline

● Probabilities 
● Parameter estimation 
● Building a likelihood 
● Hypothesis testing 

○ Significances 
○ Limits 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Why probas / stats ?

4



NPAC BSM Lecture 2, 28/02/2023N. Morange (IJCLab)

Goals
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Key tasks in statistics

● Point estimation: what single “measured” value of a parameter to report ? 
■ mH = 125.09 GeV 

 
● Interval estimation: what confidence interval to report ? 

■ mH = 125.09 ± 0.24 GeV 
 

● Hypothesis testing 
○ Tell aparts different models: model selection 

■ Is Higgs 0+ or 0- ? 
○ Test a specific value of a parameter vs any other value 
○ Goodness of fit: test a specific model vs anything else 

■ Is the data consistent with the SM expectation ? 
 

● Decision making: what action should be taken based on the observed data ? 
○ Usually based on more or less explicit conventions 

■ Ex:  The small difference between the measurement and theory is probably a fluctuation, more data 
are needed. 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Bayesian vs Frequentist statistics

● Bayesian: 
○ Closer to everyday reasoning, where probability is interpreted as a degree of belief that 

something will happen, or that a parameter will have a given value. 
 

● Frequentist: 
○ Closer to scientific reasoning, where probability means the relative frequency of something 

happening. This makes it more objective, since it can be determined independently of the 
observer, but restricts its application to repeatable phenomena. 
 

● So what ? 
○ For practical matters, results tend to be very similar in the asymptotics regime 
○ There exist nonetheless some important differences (coverage, goodness of fit…) 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Two philosophies coexist !
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Bayesian vs Frequentist: take-home messages

● Communities tend to lean towards one approach 
○ Cosmology is mostly using Bayesian statistics (there is only 1 universe…) 
○ HEP is more frequentist 

 

● Will use frequentist approach in the following 
○ By far the most common at the LHC 
○ Bayesian treatment used for historical reasons in some new physics searches 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“Bayesians address the questions everyone is interested in by using 
assumptions that no one believes. Frequentists use impeccable logic to 
deal with an issue that is of no interest to anyone.” (Louis Lyons)



Probability and random variables
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Random Variables

10

● Examples: tossing a coin, lifetime of a particle, 
throwing dices… 
 

● Random variables are usually denoted with a 
capital letter (e.g. X ) 
 

● A function P is a probability function of X if 
(Kolmogorov axioms): 

○ P(xi) ≥ 0 for all i 
○ P(xi or xj) = P(xi) + P(xj) 
○ ∑P(xi) = 1 

 
● Frequentist probability: P(A) = lim n/N 

 
● Probability distribution of the random variable 

Random variable: a variable that represents the outcome of a random phenomenon.

N→∞ 

Throwing two dices. 
Probability law for their sum 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Bayes’ theorem
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Useful example

A muon detection experiment measures: 

● P(muon ID|muon), i.e., efficiency for tagging muons 
● P(muon ID|not a muon), i.e., efficiency for background 
● P(no muon ID|muon) = 1 − P(muon ID|muon) 
● P(no muon ID|not a muon) = 1 − P(muon ID|not a muon) 

Question: Given a selection of particles identified as muons, what fraction of them is 
muons? I.e., what is P(muon|muon ID) ? 

12

Answer: Cannot be determined from the given information ! Need in addition: 
P(muon), the true fraction of all particles that are muons. 

Then Bayes’ theorem inverts the conditionality: 
P(muon|muon ID) = P(muon ID|muon)P(muon) / P(muon ID) 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Useful example, contd.

● P(muon ID|muon) is the efficiency for tagging muons 
● P(muon|muon ID) is the purity of a sample of particles identified as muons 

⇒ helpful to keep in mind when one encounters cases where it is tempting or 
confusing to make the logical error of equating P(A|B) and P(B|A). 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Probability density function

It is related to the cumulative function: 

● F so that F (x0) = P(x ≤ x0) 
○ F (a) = 0 
○ F(b) = 1 

● f (x) dx = F (x + dx) − F (x) 

14

For continuous random variables, the probability density function 
f is defined by:

f (x) dx = P(X ∈ [x, x + dx])
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Quantiles

Special case:  

● Median: xmed = x1/2 

15

The quantile xα is the value of the random variable x at which the cumulative 
distribution is equal to α. It is the inverse of the cumulative distribution function:

xα = F-1 (α)

Quantiles of the Normal law: 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Moments

● Mean µ 
 
 
 

● Variance V, standard deviation σ 
 
 
 

● Higher moments ( E((X-µ)n) ): 
○ skew (n=3): measures left-right asymmetry of the pdf 
○ kurtosis (n=4): measures the size of the tails of the distribution (if positive, then larger tails 

than a Gaussian). 

16



NPAC BSM Lecture 2, 28/02/2023N. Morange (IJCLab)

Multi-dimensional case

17

A marginal pdf is defined as:

fX is a projection of f. The other variables are integrated.

A conditional pdf is defined as:

fC is a slice of f

Example: 3 variables x, y, z, with a joint pdf f 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Independence and correlation

18

Two variables X and Y are independent iff f(x,y) = fX(x)fY(y)

Correlation coefficient between two variables X and Y:

with C(X, Y) =  E((X − μX)(Y − μY)) = E(XY) − E(X) E(Y)

Independent 
⇒ ρ = 0 
 
The opposite is 
not true 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Binomial law

● Mean E(n) = pN 
 

● Variance V(n) = Np(1-p) 
 

● Example: out of 1000 collisions, how 
many will produce a W boson ? 
 

● In the limit of small p and large N, 
with pN constant, the binomial law 
converges towards the Poisson law 

19

A random process of probability of success p is repeated N times.

The number of successes n follows a binomial distribution:
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Poisson law

● Mean E(n) = µ 
 

● Variance V(n) = µ 
 

● Pµ1 + Pµ2 = Pµ1+µ2 
 

● Example: how many Higgs bosons are 
produced for a luminosity L = 140 fb-1 ? 
 

● In the limit of large µ, the Poisson 
distribution converges towards a Gaussian 
distribution 

20

Typical case of random memoryless processes.

The probability to observe n events in a given interval follows a Poisson distribution:
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Gaussian distribution

● Mean E(x) = µ 
 

● Variance V(x) = σ² 
 

● Special case µ=0, σ=1 is called the 
Normal law 
 

● Gaussian distributions play a very special 
role in statistics because of the Central 
Limit Theorem 

21

A continuous random variable x follows a Gaussian distribution of parameters 
µ and σ: 
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Normal law: useful numbers

22
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Summary of common and useful distributions

23

https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-probability.pdf


Parameter estimation

24
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Parameter estimation ?

25

● Suppose we have a model, represented by a pdf f(x|θ) 
○ x is a random variable 
○ θ represents parameters that affect the shape of the pdf 

 
● Now, let us collect a sample of observed data x=(x1, x2,..., xN) 

 
● We want to say something of the parameters θ using the data 

 
● An estimator is a function of the data (a.k.a a statistic), that is used to estimate 

the value of a parameter: 
○ tN(x) 
○ tN(x) → θ ? 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Estimator properties

X is a random variable of pdf f(x|θ0), with θ0 unknown. An estimator tN of θ0 can be: 

● unbiased (accuracy): if the bias bN = E(tN) - θ0 = 0.  
 

● convergent (or consistent): mathematical convergence towards the true value for 
large enough N 
 

● efficient (precision): if the variance of the estimator V(tN) converges towards a 
minimum variance bound 
 

● optimal: if tN minimises the Mean Square Error (MSE): 
MSE(tN) = V(tN) + bN² 
 

● robust: if it does not depend on a hypothesis on the pdf 

26

Not all estimators are born equal



NPAC BSM Lecture 2, 28/02/2023N. Morange (IJCLab)

Usual method to build estimators

● Moments method 
○ aka the sample mean ! 

 
● Maximum likelihood method 

○ today’s focus 
 

● Least squares method 
○ still useful in many occasions 

27
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Likelihood function
A random variable x follows a pdf f(x|θ) where θ represents parameter(s). 

N independent observations of x are obtained: x1, …, xN 

The joint pdf of the N observations is then: 

P(X|θ) = ∏ f(xi|θ) 

The likelihood function is this pdf, evaluated with fixed data X and regarded as a 
function of the parameters θ only: 

L(θ) = P(X|θ) 

Notes: 

● L(θ) is not a pdf for θ. The area under L is meaningless  
● It is not even normalised to unity. The absolute value of the likelihood is also 

meaningless 

 

28
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Maximum likelihood estimators

If the hypothesized θ is close to the true value, then there is a high probability to get 
data like the observed one. 

29

The maximum likelihood (ML) estimator(s) are defined as the parameter 
value(s) for which the likelihood is maximum

● In practice, we usually minimize -ln L(θ) or -2ln L(θ) 
 

● ML estimators are not guaranteed to be always unbiased, neither optimal 
 

● In practice they are very good: asymptotically unbiased, with a MLE distribution 
asymptotically Gaussian 
 

● ML estimators are not robust: the shape of the pdf must be known 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Example: estimation of Gaussian parameters 

● Random process following a Gaussian law 
of unknown mean and variance: 

○ Example: Invariant mass distribution of 
Z→e+e- 

○ Parameters: θ ↦ µ mean, σ standard error 
○ Observables: xi 
○ PDF: f ↦ G (x | µ, σ ) = 1/√(2πσ²) exp( - (x-µ)² / 

2σ² ) 

30
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Parameter estimation

● Likelihood function to maximize:  

 

● In practice, we minimize the negative log-likelihood: 

 
 

● which yields: 

31

Sample mean ! 

Biased estimator ! 
(but asymptotically 
unbiased) 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Live example

32

● When adding data 
○ μ̂ converges to µ=91 
○ σ̂ converges to σ=4 
○ Uncertainty in the estimate 

decreases as well 
 

● Maximisation of likelihood 
function 

○ Analytical calculation here 
○ Usually relying on numerical 

minimisers: Minuit
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Coverage probability and confidence level

● Frequentists report confidence intervals, which will contain the true value of the 
parameter θ a certain fraction of the time (called the confidence level). 
 

● Frequentist Principle (Neyman): Construct statements such that a fraction 
 f ≥ 1 − α of them are true over an ensemble of statements. 

○ f is called the coverage probability 
○ 1 − α is called the confidence level 
○ An ensemble of statements that obeys the FP is said to cover 

 
● Application to confidence intervals: if we report a confidence interval I and we 

repeat the experiment N times, then a fraction f of the intervals I will contain the 
true value of the parameter 

33

Beyond parameter estimation: uncertainty in the parameter
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Confidence intervals for ML estimators

● Finding procedures that give correct coverage (i.e neither undercoverage nor 
overcoverage) is in general not trivial 
 

● Asymptotic properties of log-likelihoods to the rescue: 
○ Wald’s approximation: the likelihood shape is asymptotically gaussian around its 

maximum 
○ Wilk’s theorem: -2 ln L(θ) asymptotically follows a χ² law with d degrees of freedom, where 

d is the dimensionality of θ 
○ Consequence: Confidence intervals can be obtained from the inverse quantiles of a χ² 

distribution with d degrees of freedom: the so-called likelihood intervals 

34

Values of ∆χ² or 2∆ ln L 
corresponding to a coverage 
probability 1−α in the large 
data sample limit, for joint 
estimation of N parameters. 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Example: Higgs mass measurement

35
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Example in 2D: measurement of Bs → μμ and B0 → μμ

36



Building a likelihood
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Likelihoods in collider experiments

38

● Observables are numbers of events 
○ After selections, in categories, bins… 
○ Due to the nature of collisions (independent), they 

obey Poisson laws 
 

● Simplest case: number counting experiment 
○ D observed events 
○ s expected signal events (parameter of interest) 
○ b expected background events (known) 

 
○  

 
○ What is the MLE of s ? 

■ L(s) = p(D|s,b) 
■ dL/ds = 0 ⇒ s = D-b 

Example: light-by-light scattering 
● D = 13 
● b = 2.6 ± 0.7 
● s = 10.4 

Nature Phys. 13 (2017) no. 9, 852-858 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Extension: multiple analysis regions, multiple bins

● Signal strength µ: often used as the 
main parameter of interest 

○ µ = σ/σSM 
 
 

● Likelihood is a product of Poisson: 
 
 
 

● Special cases: 
○ N=1: counting experiment 
○ N=∞: unbinned analysis (si and bi 

become pdf values) 
● In practice, binned pdfs are often used 

○ Software to do it easily: HistFactory 
 

39

In practice, almost all analyses have more than one observable

4e 

4µ 

2e2µ 

expected numbers of events in bin i 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Dealing with uncertainties: nuisance parameters
● In a realistic model, the expectations for si and bi are uncertain 

○ Affected by systematic uncertainties 
 

● This uncertainty can be added to our likelihood model as new parameters 
affecting the shape of the pdfs 

○ bi → bi(θ), si → si(θ) 
○ They are new parameters of the likelihood: L(µ) → L(µ,θ) 
○ But they are of no interest for our measurement: nuisance parameters (NP) 

 
● Often we do have additional knowledge on these parameters 

○ Ex: Background estimation performed in a dedicated control region (with some uncertainty) 
○ Ex: Luminosity calibrated in a dedicated measurement (with some uncertainty) 
○ This knowledge should be incorporated into the likelihood 
○ Factorizable: p(ni|µ) → p(ni,yj|µ,θ) = Poiss(ni|µ,θ) ✕ pdf(yj|θ) 
○ For the likelihood: L(µ,θ) = Lmeas(µ,θ) ✕ C(θ) 

40

data bins  constraint terms 

Constraint terms are most often Normal (Gaussian), but other distributions sometimes used (log-normal)

auxiliary measurements 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Profile likelihood

● Nuisance parameters are not of interest for our 
measurement 

● Profile likelihood: 
 
 
 

○  are the values of the parameters θ that maximise 
the likelihood for a given value µ of the parameters 
of interest 

○ Lp(µ) is a function of the POI only: for each µ, new 
values of    are obtained. 

○ It reduces the dimensionality of L to that of µ 
(usually 1-d) 

41
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Working with profile likelihoods I

● Working with >200 NPs is commonplace 
 

● ML estimators make sense and have 
good properties, assuming the pdf (i.e 
the model) is correct ! 

● Great care should be taken to ensure 
this is the case 

○ Goodness-of-fit tests 
○ Do the ML fitted values for the NPs make 

sense (pulls) ? 
○ Do the ML uncertainties for the NPs make 

sense (constraints) ? 
 

● Keep track of how NPs affect the 
estimated POI (impact) 

42

Profile likelihoods are complex objects !

Impact of 
NPs on 
the POI 

ML values and 
uncertainties 
of the NPs 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Working with profile likelihoods II

Error decomposition: 

● Total uncertainty comes from the profile 
likelihood scan:  
 

● Statistical comes from a scan where all NPs 
are set to their best fit value               : 
 
 

● Other curves are intermediate cases where 
some NP are profiled while others are set to 
their best fit value in the scan 

○ Allows to estimate the fraction of the total 
uncertainty coming from some NPs 

43



Hypothesis testing

44
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Motivation: July 2012

● Analysis ready: take data and wait 

 

● We “see” a bump at 125 GeV: 
○ Is that a discovery ? 
○ How do we quantify it ? 

45
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Hypothesis testing

46

Types of hypotheses 

● Simple hypothesis: fully specified, including parameter values 
○ eg: H0 = Higgs is 0+ vs H1 = Higgs is 0- 

● Composite hypothesis: ensemble of simple hypotheses 
● Nested hypotheses: most common case for searches 

○ µ = 0 (background-only) vs µ>0 (new physics signal !) 
○ µ = 1 (SM expectation) vs µ ≠ 1 (SM is broken !) 

 

Two ingredients for a hypothesis test 

● A test statistic t(x) 
● A critical region w such the hypothesis H0 is false 

(with a given probability) if t in w 
○ The alternative hypothesis is named H1 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Power and size of a test
● Size of the test (level of significance): ɑ = 

P(t∈w|H0 true) 
○ Also called error of the first kind (Type I error) 
○ “false discovery claim”: probability of rejecting H0 

when it is true 
● Power of the test: 1 - β with β = P(t∉w | H1) 

○ Also called error of the second kind (Type II error) 
○ Probability of not claiming a discovery when there is 

one 

47

There is a tradeoff 
between Type I and 
Type II errors 

P(t∉w) P(t∈w)

H0 true 1 - ɑ ɑ

H1 true β 1 - β
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Example: muon ID experiment

A muon detection experiment measures: 

● P(muon ID|muon), i.e., efficiency for tagging muons 
● P(muon ID|not a muon), i.e., efficiency for background 
● P(no muon ID|muon) = 1 − P(muon ID|muon) 
● P(no muon ID|not a muon) = 1 − P(muon ID|not a muon) 

Hypotheses: 

● H0: not a muon 
● H1: muon 

Then: 

● Size of the test ɑ = P(muon ID | not a muon) 
● Power of the test β = P(no muon ID | muon) 

48
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Neyman-Pearson lemma

In the comparison of two simple hypotheses H0 and H1, the optimal discriminator is 
the likelihood ratio (LR): 

49

Notes: 

● Optimal: minimizes Type II error for a given Type I level of significance  
● Valid for any monotonic function of t 

○ Ex: q(x) = -2 ln t(x) 
○ Ex: In a counting experiment, number of events 

● Strictly valid for simple hypotheses only. 
○ However, in practice, works extremely well for our nested hypotheses 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Procedure for hypothesis testing

● Specify the null and the alternate hypotheses 
○ Ex: H0 = SM background, H1 = BSM signal 

● Build a test statistic t(x) using e.g Neyman-Pearson lemma 
● Specify the significance of the test (what we accept as a false discovery rate) 

○ Ex: 2.9 10-7 (5σ) for discovery 
○ Ex: 0.05 for exclusion 

● See where the measurement is tobs  
● Depending on whether tobs is in or out of the critical region: decide on H0 

50
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p-value and significance

● p-value: p0 = p(t ≥ tobs | H0) 
○ Significance level of the test ɑ: chosen prior to look 

at the data 
○ p-value: interesting quantity to compute when 

looking at the data 
 

● Interpretation: 
○ probability for the test statistic t to be larger than 

the observed one tobs, under the null hypothesis H0  
○ NOT “the probability that H0 is true” 

 
● “Significance” in number of sigmas: 

○ translation of the p-value using the integral in one 
tail of a Gaussian 
 
 

○ Convention: 3σ is evidence, 5σ is discovery 

51
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Profile likelihood ratio and asymptotics formulae
● At the LHC, to deal with systematics, the basis of test statistics used for hypothesis 

testing is the Profile Likelihood Ratio (PLR): 
 
 
 

● Then the test statistic for discovery is: 
 
 
 
 

● Asymptotics properties of the PLR make it easy 
to work with: 

○ Wald’s approximation, Wilks’ theorem 
○ Cowan, Cranmer, Gross and Vitells, EPJC 71 (2011) 1554 
○ Median expected properties from the Asimov dataset 

■ No need for CPU intensive toys ! 
○  

52
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p-value in counting experiments

● n observed events, b background 
○ n = µ.s + b 

53

Very useful formula for e.g optimization studies Gaussian approximation 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Example: ttH observation

p-value (transformed as a 
significance) can be 
directly read on the y axis: 
q0 = q(µ=0) 

54
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Example: Higgs boson discovery

● Each Higgs mass hypothesis is 
scanned independently 
 

● For each mass: 
○ Observed: p-value observed in data 
○ Expected: median of the p-value 

expected in the presence of the SM 
Higgs boson 

○ Blue band: interval containing 68% of 
the p-values under SM Higgs 
hypothesis 
 

● “Local” p0 
○ Many mass points scanned 
○ Look-elsewhere effect: global p0 to 

correct for number of trials 

55
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Exclusion limits

● Similar procedure to discovery case, but 
hypotheses are inverted: 

○ H0: signal + background hypothesis 
○ H1: background-only hypothesis 

 
● Goal: disprove H0 by estimating the 

probability of downward fluctuation of s+b 
 

● Size of test less stringent: ɑ = 0.05 
○ 95% CL limits 

 
● Upper limit: minimal signal strength for 

which H0 can be excluded at 95% CL 

56
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Test statistics for exclusion

● Still using PLR-based test statistic: 
 
 
 
 

○ NB: one does not regard an upwards fluctuation 
of the data as representing incompatibility with 
the hypothesized μ 
 
 
 
 

● In this case as well asymptotics formulae exist 
for the different distributions 

○ Fairly quick computation of limits 

57
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CLs correction

● Potential problem when setting limits: 
spurious exclusion when there is a 
downward fluctuation of the data even 
wrt the background-only hypothesis 
 

● Definition: 
 

○ If the two distributions are well separated, 
small change wrt CLs+b 

○ If distributions are close, prevents spurious 
exclusion 

58
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Example: search for high mass dilepton resonances

● For each hypothetized MZ’ value, compute: 
○ Expected limit: median value of upper limit 

under bkg-only hypo. 
○ Expected ±1σ: interval containing 68% of the 

upper limit values under bkg-only 
○ Expected ±2σ: interval containing 95% of the 

upper limit values under bkg-only 
○ Observed limit: upper limit obtained using 

data actually observed 
○ Theoretical curves: often superimposed. 

Crossing point gives lower limit on the Z’ 
mass for the given model 
 

● All expected limits can be obtained with 
asymptotics formulae 

○ At very high masses, very low number of 
events: good practice to cross-check limit 
with toys 

59
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Conclusions

● Statistical analyses rely on likelihood functions: 
○ Parameters of interest we want to measure (cross-section, mass…) 
○ Other parameters of the model are called nuisance parameters 

 
● Parameter estimation uses maximum likelihood values as estimators 

○ Asymptotic properties of the likelihoods allows to set easily confidence intervals 
 

● Hypothesis testing is used to claim discovery or to set limits 
○ Use Profile likelihood ratio-based test statistics 
○ Null and alternative hypotheses have to be set appropriately 
○ Significance of the test: 0.05 for exclusion, 5σ for discovery, etc… 
○ Asymptotic formulas allow to compute limits and significances without the need for massive 

amount of toy data. 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Some knowledge of statistics is necessary to perform and understand BSM searches at the LHC
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